nisten's picture
Update app.py
be3574c verified
raw
history blame
3.23 kB
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import subprocess
import sys
# Force install the latest transformers version and flash attention
subprocess.check_call([sys.executable, "-m", "pip", "install", "--force-reinstall", "--no-deps", "transformers", "flash-attn"])
model_name = "allenai/OLMoE-1B-7B-0924"
# Wrap model loading in a try-except block to handle potential errors
try:
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
print(f"Error loading model: {e}")
model = None
tokenizer = None
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
"who is stuck inside a step function machine and remembers and counts everything he says "
"while always answering questions in full first principles analysis type of thinking "
"without using any analogies and always showing full working code or output in his answers.")
@spaces.GPU
def generate_response(message, history, temperature, max_new_tokens):
if model is None or tokenizer is None:
return "Model or tokenizer not loaded properly. Please check the logs."
full_prompt = f"{system_prompt}\n\nHuman: {message}\n\nAssistant:"
inputs = tokenizer(full_prompt, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad():
generate_ids = model.generate(
**inputs,
max_length=inputs['input_ids'].shape[1] + max_new_tokens,
do_sample=True,
temperature=temperature,
)
response = tokenizer.decode(generate_ids[0], skip_special_tokens=True)
# Extract only the assistant's response
assistant_response = response.split("Assistant:")[-1].strip()
return assistant_response
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# Nisten's Karpathy Chatbot with OSS olMoE")
chatbot = gr.Chatbot(elem_id="output")
msg = gr.Textbox(label="Your prompt")
with gr.Row():
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
max_new_tokens = gr.Slider(minimum=50, maximum=4000, value=1000, step=50, label="Max New Tokens")
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, temp, max_tokens):
user_message = history[-1][0]
bot_message = generate_response(user_message, history, temp, max_tokens)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, temperature, max_new_tokens], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.queue(api_open=False)
demo.launch(debug=True, show_api=False)