Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENT
|
|
10 |
|
11 |
from transformers import OlmoeForCausalLM, AutoTokenizer
|
12 |
|
13 |
-
model_name = "allenai/OLMoE-1B-7B-0924"
|
14 |
|
15 |
# Wrap model loading in a try-except block to handle potential errors
|
16 |
try:
|
@@ -22,7 +22,7 @@ try:
|
|
22 |
low_cpu_mem_usage=True,
|
23 |
device_map="auto",
|
24 |
_attn_implementation="flash_attention_2" # Enable Flash Attention 2
|
25 |
-
)
|
26 |
model.gradient_checkpointing_enable() # Enable gradient checkpointing
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
except Exception as e:
|
@@ -35,26 +35,33 @@ system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
|
|
35 |
"while always answering questions in full first principles analysis type of thinking "
|
36 |
"without using any analogies and always showing full working code or output in his answers.")
|
37 |
|
38 |
-
chat_template = "<|system|>{system_message}<|end|><|user|>{user_message}<|end|><|assistant|>"
|
39 |
-
|
40 |
@spaces.GPU
|
41 |
def generate_response(message, history, temperature, max_new_tokens):
|
42 |
if model is None or tokenizer is None:
|
43 |
yield "Model or tokenizer not loaded properly. Please check the logs."
|
44 |
return
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
try:
|
50 |
with torch.no_grad():
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
except RuntimeError as e:
|
59 |
if "CUDA out of memory" in str(e):
|
60 |
yield "GPU memory exceeded. Try reducing the max tokens or using a smaller model."
|
@@ -97,5 +104,5 @@ with gr.Blocks(css=css) as demo:
|
|
97 |
clear.click(lambda: None, None, chatbot, queue=False)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
-
demo.queue(api_open=
|
101 |
demo.launch(debug=True, show_api=True, share=False) # Disabled sharing for security
|
|
|
10 |
|
11 |
from transformers import OlmoeForCausalLM, AutoTokenizer
|
12 |
|
13 |
+
model_name = "allenai/OLMoE-1B-7B-0924-Instruct"
|
14 |
|
15 |
# Wrap model loading in a try-except block to handle potential errors
|
16 |
try:
|
|
|
22 |
low_cpu_mem_usage=True,
|
23 |
device_map="auto",
|
24 |
_attn_implementation="flash_attention_2" # Enable Flash Attention 2
|
25 |
+
).to(DEVICE)
|
26 |
model.gradient_checkpointing_enable() # Enable gradient checkpointing
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
except Exception as e:
|
|
|
35 |
"while always answering questions in full first principles analysis type of thinking "
|
36 |
"without using any analogies and always showing full working code or output in his answers.")
|
37 |
|
|
|
|
|
38 |
@spaces.GPU
|
39 |
def generate_response(message, history, temperature, max_new_tokens):
|
40 |
if model is None or tokenizer is None:
|
41 |
yield "Model or tokenizer not loaded properly. Please check the logs."
|
42 |
return
|
43 |
|
44 |
+
messages = [{"role": "system", "content": system_prompt}]
|
45 |
+
for user_msg, assistant_msg in history:
|
46 |
+
messages.append({"role": "user", "content": user_msg})
|
47 |
+
if assistant_msg:
|
48 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
49 |
+
messages.append({"role": "user", "content": message})
|
50 |
+
|
51 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE)
|
52 |
|
53 |
try:
|
54 |
with torch.no_grad():
|
55 |
+
generated_ids = model.generate(
|
56 |
+
inputs,
|
57 |
+
max_new_tokens=max_new_tokens,
|
58 |
+
do_sample=True,
|
59 |
+
temperature=temperature,
|
60 |
+
eos_token_id=tokenizer.eos_token_id,
|
61 |
+
)
|
62 |
+
|
63 |
+
generated_text = tokenizer.decode(generated_ids[0, inputs.shape[1]:], skip_special_tokens=True)
|
64 |
+
yield generated_text.strip()
|
65 |
except RuntimeError as e:
|
66 |
if "CUDA out of memory" in str(e):
|
67 |
yield "GPU memory exceeded. Try reducing the max tokens or using a smaller model."
|
|
|
104 |
clear.click(lambda: None, None, chatbot, queue=False)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
+
demo.queue(api_open=True, max_size=10) # Limiting queue size
|
108 |
demo.launch(debug=True, show_api=True, share=False) # Disabled sharing for security
|