Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import subprocess
|
|
5 |
import sys
|
6 |
|
7 |
# Install required packages
|
8 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "--force-reinstall", "--no-deps", "accelerate", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
|
9 |
-
subprocess.run('pip install flash-attn --no-build-isolation
|
10 |
|
11 |
from transformers import OlmoeForCausalLM, AutoTokenizer
|
12 |
|
@@ -18,11 +18,12 @@ try:
|
|
18 |
model = OlmoeForCausalLM.from_pretrained(
|
19 |
model_name,
|
20 |
trust_remote_code=True,
|
21 |
-
torch_dtype=torch.
|
22 |
low_cpu_mem_usage=True,
|
23 |
device_map="auto",
|
24 |
_attn_implementation="flash_attention_2" # Enable Flash Attention 2
|
25 |
)
|
|
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
except Exception as e:
|
28 |
print(f"Error loading model: {e}")
|
@@ -45,13 +46,22 @@ def generate_response(message, history, temperature, max_new_tokens):
|
|
45 |
full_prompt = chat_template.format(system_message=system_prompt, user_message=message)
|
46 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(DEVICE)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
css = """
|
57 |
#output {
|
@@ -76,7 +86,7 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
def bot(history, temp, max_tokens):
|
77 |
user_message = history[-1][0]
|
78 |
bot_message = ""
|
79 |
-
for token in generate_response(user_message, history, temp, max_tokens):
|
80 |
bot_message = token
|
81 |
history[-1][1] = bot_message
|
82 |
yield history
|
@@ -84,8 +94,8 @@ with gr.Blocks(css=css) as demo:
|
|
84 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
85 |
bot, [chatbot, temperature, max_new_tokens], chatbot
|
86 |
)
|
87 |
-
clear.click(lambda: None, None, chatbot, queue=
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
-
demo.queue(api_open=
|
91 |
-
demo.launch(debug=True, show_api=True)
|
|
|
5 |
import sys
|
6 |
|
7 |
# Install required packages
|
8 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "--force-reinstall", "--no-deps", "einops" "accelerate", "git+https://github.com/Muennighoff/transformers.git@olmoe"])
|
9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
from transformers import OlmoeForCausalLM, AutoTokenizer
|
12 |
|
|
|
18 |
model = OlmoeForCausalLM.from_pretrained(
|
19 |
model_name,
|
20 |
trust_remote_code=True,
|
21 |
+
torch_dtype=torch.float16, # Using float16 for lower precision
|
22 |
low_cpu_mem_usage=True,
|
23 |
device_map="auto",
|
24 |
_attn_implementation="flash_attention_2" # Enable Flash Attention 2
|
25 |
)
|
26 |
+
model.gradient_checkpointing_enable() # Enable gradient checkpointing
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
except Exception as e:
|
29 |
print(f"Error loading model: {e}")
|
|
|
46 |
full_prompt = chat_template.format(system_message=system_prompt, user_message=message)
|
47 |
inputs = tokenizer(full_prompt, return_tensors="pt").to(DEVICE)
|
48 |
|
49 |
+
try:
|
50 |
+
with torch.no_grad():
|
51 |
+
streamer = tokenizer.stream(inputs.input_ids, model, temperature=temperature, max_new_tokens=max_new_tokens)
|
52 |
+
|
53 |
+
collected_tokens = []
|
54 |
+
for token in streamer:
|
55 |
+
collected_tokens.append(token)
|
56 |
+
partial_text = tokenizer.decode(collected_tokens, skip_special_tokens=True)
|
57 |
+
yield partial_text.strip()
|
58 |
+
except RuntimeError as e:
|
59 |
+
if "CUDA out of memory" in str(e):
|
60 |
+
yield "GPU memory exceeded. Try reducing the max tokens or using a smaller model."
|
61 |
+
else:
|
62 |
+
yield f"An error occurred: {str(e)}"
|
63 |
+
except Exception as e:
|
64 |
+
yield f"An unexpected error occurred: {str(e)}"
|
65 |
|
66 |
css = """
|
67 |
#output {
|
|
|
86 |
def bot(history, temp, max_tokens):
|
87 |
user_message = history[-1][0]
|
88 |
bot_message = ""
|
89 |
+
for token in generate_response(user_message, history[:-1], temp, max_tokens):
|
90 |
bot_message = token
|
91 |
history[-1][1] = bot_message
|
92 |
yield history
|
|
|
94 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
95 |
bot, [chatbot, temperature, max_new_tokens], chatbot
|
96 |
)
|
97 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
+
demo.queue(api_open=False, max_size=10) # Limiting queue size
|
101 |
+
demo.launch(debug=True, show_api=True, share=False) # Disabled sharing for security
|