Spaces:
Runtime error
Runtime error
first update
Browse files- .gitignore +5 -0
- app.py +17 -17
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/__pycache__
|
2 |
+
/flagged
|
3 |
+
|
4 |
+
.env
|
5 |
+
/testing
|
app.py
CHANGED
@@ -9,26 +9,33 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline("automatic-speech-recognition",
|
|
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
embeddings_dataset = load_dataset(
|
21 |
-
|
|
|
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
speech = model.generate_speech(inputs["input_ids"].to(
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
@@ -41,7 +48,7 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
@@ -49,14 +56,6 @@ Demo for cascaded speech-to-speech translation (STST), mapping from source speec
|
|
49 |
|
50 |
demo = gr.Blocks()
|
51 |
|
52 |
-
mic_translate = gr.Interface(
|
53 |
-
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
55 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
-
title=title,
|
57 |
-
description=description,
|
58 |
-
)
|
59 |
-
|
60 |
file_translate = gr.Interface(
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
@@ -67,6 +66,7 @@ file_translate = gr.Interface(
|
|
67 |
)
|
68 |
|
69 |
with demo:
|
70 |
-
gr.TabbedInterface([
|
|
|
71 |
|
72 |
demo.launch()
|
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition",
|
13 |
+
model="openai/whisper-base", device=device)
|
14 |
|
15 |
# load text-to-speech checkpoint and speaker embeddings
|
16 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
17 |
|
18 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(
|
19 |
+
"sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
20 |
+
vocoder = SpeechT5HifiGan.from_pretrained(
|
21 |
+
"microsoft/speecht5_hifigan").to(device)
|
22 |
|
23 |
+
embeddings_dataset = load_dataset(
|
24 |
+
"Matthijs/cmu-arctic-xvectors", split="validation")
|
25 |
+
speaker_embeddings = torch.tensor(
|
26 |
+
embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
|
28 |
|
29 |
def translate(audio):
|
30 |
+
outputs = asr_pipe(audio, max_new_tokens=128, generate_kwargs={
|
31 |
+
"task": "transcribe", "language": "nl"})
|
32 |
return outputs["text"]
|
33 |
|
34 |
|
35 |
def synthesise(text):
|
36 |
inputs = processor(text=text, return_tensors="pt")
|
37 |
+
speech = model.generate_speech(inputs["input_ids"].to(
|
38 |
+
device), speaker_embeddings.to(device), vocoder=vocoder)
|
39 |
return speech.cpu()
|
40 |
|
41 |
|
|
|
48 |
|
49 |
title = "Cascaded STST"
|
50 |
description = """
|
51 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
52 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
53 |
|
54 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
|
|
56 |
|
57 |
demo = gr.Blocks()
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
file_translate = gr.Interface(
|
60 |
fn=speech_to_speech_translation,
|
61 |
inputs=gr.Audio(source="upload", type="filepath"),
|
|
|
66 |
)
|
67 |
|
68 |
with demo:
|
69 |
+
gr.TabbedInterface([file_translate],
|
70 |
+
["Audio File"])
|
71 |
|
72 |
demo.launch()
|