nithiroj commited on
Commit
2e51b92
·
1 Parent(s): 437e9fe

first update

Browse files
Files changed (2) hide show
  1. .gitignore +5 -0
  2. app.py +17 -17
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ /__pycache__
2
+ /flagged
3
+
4
+ .env
5
+ /testing
app.py CHANGED
@@ -9,26 +9,33 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
 
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
32
  return speech.cpu()
33
 
34
 
@@ -41,7 +48,7 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
@@ -49,14 +56,6 @@ Demo for cascaded speech-to-speech translation (STST), mapping from source speec
49
 
50
  demo = gr.Blocks()
51
 
52
- mic_translate = gr.Interface(
53
- fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
- title=title,
57
- description=description,
58
- )
59
-
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
@@ -67,6 +66,7 @@ file_translate = gr.Interface(
67
  )
68
 
69
  with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
 
71
 
72
  demo.launch()
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition",
13
+ model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
17
 
18
+ model = SpeechT5ForTextToSpeech.from_pretrained(
19
+ "sanchit-gandhi/speecht5_tts_vox_nl").to(device)
20
+ vocoder = SpeechT5HifiGan.from_pretrained(
21
+ "microsoft/speecht5_hifigan").to(device)
22
 
23
+ embeddings_dataset = load_dataset(
24
+ "Matthijs/cmu-arctic-xvectors", split="validation")
25
+ speaker_embeddings = torch.tensor(
26
+ embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
 
28
 
29
  def translate(audio):
30
+ outputs = asr_pipe(audio, max_new_tokens=128, generate_kwargs={
31
+ "task": "transcribe", "language": "nl"})
32
  return outputs["text"]
33
 
34
 
35
  def synthesise(text):
36
  inputs = processor(text=text, return_tensors="pt")
37
+ speech = model.generate_speech(inputs["input_ids"].to(
38
+ device), speaker_embeddings.to(device), vocoder=vocoder)
39
  return speech.cpu()
40
 
41
 
 
48
 
49
  title = "Cascaded STST"
50
  description = """
51
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
52
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
53
 
54
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
 
56
 
57
  demo = gr.Blocks()
58
 
 
 
 
 
 
 
 
 
59
  file_translate = gr.Interface(
60
  fn=speech_to_speech_translation,
61
  inputs=gr.Audio(source="upload", type="filepath"),
 
66
  )
67
 
68
  with demo:
69
+ gr.TabbedInterface([file_translate],
70
+ ["Audio File"])
71
 
72
  demo.launch()