npc0 commited on
Commit
aedefaa
·
1 Parent(s): 79f9dfb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py CHANGED
@@ -39,3 +39,81 @@ def read_license_number(img):
39
  return [pytesseract.image_to_string(
40
  image.crop(bbox.tolist()))
41
  for bbox in boxes]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  return [pytesseract.image_to_string(
40
  image.crop(bbox.tolist()))
41
  for bbox in boxes]
42
+
43
+ from transformers import CLIPProcessor, CLIPModel
44
+ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
45
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
46
+
47
+ def zero_shot_classification(image, labels):
48
+ inputs = processor(text=labels,
49
+ images=image,
50
+ return_tensors="pt",
51
+ padding=True)
52
+ outputs = model(**inputs)
53
+ logits_per_image = outputs.logits_per_image # this is the image-text similarity score
54
+ return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
55
+
56
+ installed_list = []
57
+ # image = Image.open(requests.get(url, stream=True).raw)
58
+ def check_solarplant_installed_by_license(license_number_list):
59
+ if len(installed_list):
60
+ return [license_number in installed_list
61
+ for license_number in license_number_list]
62
+
63
+ def check_solarplant_installed_by_image(image, output_label=False):
64
+ zero_shot_class_labels = ["bus with solar panel grids",
65
+ "bus without solar panel grids"]
66
+ probs = zero_shot_classification(image, zero_shot_class_labels)
67
+ if output_label:
68
+ return zero_shot_class_labels[probs.argmax().item()]
69
+ return probs.argmax().item() == 0
70
+
71
+ def check_solarplant_broken(image):
72
+ zero_shot_class_labels = ["white broken solar panel",
73
+ "normal black solar panel grids"]
74
+ probs = zero_shot_classification(image, zero_shot_class_labels)
75
+ idx = probs.argmax().item()
76
+ return zero_shot_class_labels[idx][1-idx]
77
+
78
+ from fastsam import FastSAM, FastSAMPrompt
79
+
80
+ model = FastSAM('./FastSAM.pt')
81
+ DEVICE = 'cpu'
82
+ IMAGE_PATH = 'sam.jpg'
83
+ def segment_solar_panel(img):
84
+ img.Save(IMAGE_PATH)
85
+ everything_results = model(IMAGE_PATH, device=DEVICE, retina_masks=True, imgsz=1024, conf=0.4, iou=0.9,)
86
+ prompt_process = FastSAMPrompt(IMAGE_PATH, everything_results, device=DEVICE)
87
+
88
+ # everything prompt
89
+ ann = prompt_process.everything_prompt()
90
+
91
+ # bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
92
+ ann = prompt_process.box_prompt(bbox=[[200, 200, 300, 300]])
93
+
94
+ # text prompt
95
+ ann = prompt_process.text_prompt(text='solar panel grids')
96
+
97
+ # point prompt
98
+ # points default [[0,0]] [[x1,y1],[x2,y2]]
99
+ # point_label default [0] [1,0] 0:background, 1:foreground
100
+ ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])
101
+
102
+ prompt_process.plot(annotations=ann,output_path='./dog.jpg',)
103
+ return Image.Open('./dog.jpg')
104
+
105
+
106
+ import gradio as gr
107
+
108
+ def greet(img):
109
+ lns = read_license_number(img)
110
+ if len(lns):
111
+ seg = segment_solar_panel(img)
112
+ return (seg,
113
+ "車牌: " + '; '.join(lns) + "\n\n" \
114
+ + "類型: "+ check_solarplant_installed_by_image(img, True) + "\n\n" \
115
+ + "狀態:" + check_solarplant_broken(img))
116
+ return (img, "空地。。。")
117
+
118
+ iface = gr.Interface(fn=greet, inputs="image", outputs=["image", "text"])
119
+ iface.launch()