Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import random | |
import torch | |
from diffusers import FluxPipeline | |
from huggingface_hub.utils import RepositoryNotFoundError | |
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) | |
pipeline.load_lora_weights("pepper13/fluxfw").to("cuda") | |
with open("main.css", "r") as css: | |
link = css | |
def generate(prompt): | |
return pipeline( | |
prompt=prompt, | |
width=512, | |
height=512, | |
num_inference_steps=20, | |
generator=torch.Generator("cpu").manual_seed(random.randint(42, 69)), | |
guidance_scale=7 | |
).images[0] | |
with gr.Blocks(css=link) as interface: | |
with gr.Column(elem_classes="interface-container"): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want to generate.", | |
value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", | |
lines=1, | |
interactive=True, | |
elem_classes="text-box" | |
) | |
generate_button = gr.Button("Generate Image", elem_classes="btn") | |
output = gr.Image(elem_classes="image-output") | |
generate_button.click( | |
fn=generate, | |
inputs=[prompt], | |
outputs=[output] | |
) | |
if __name__ == "__main__": | |
interface.launch() |