Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,335 Bytes
256e1f6 1e2a90a 256e1f6 1e2a90a 256e1f6 1e2a90a 256e1f6 1e2a90a 256e1f6 1e2a90a 256e1f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
import os
import numpy as np
import torch
import yaml
from tqdm import tqdm
from diffusion import create_diffusion
from models import DiT_models
def find_model(model_name):
assert os.path.isfile(model_name), f"Could not find DiT checkpoint at {model_name}"
checkpoint = torch.load(model_name, map_location=lambda storage, loc: storage)
if "ema" in checkpoint: # supports checkpoints from train.py
print("Using EMA model")
checkpoint = checkpoint["ema"]
else:
print("Using model")
checkpoint = checkpoint["model"]
return checkpoint
def get_batch(
step, batch_size, seq_len, DEVICE, data_file, data_dim, data_mean, data_std
):
# Load dataset from memmap file
arr = np.memmap(data_file, dtype=np.float16, mode="r")
arr = np.memmap(
data_file,
dtype=np.float16,
mode="r",
shape=(arr.shape[0] // (data_dim + 3), data_dim + 3),
)
# Create random number generator
rng = np.random.Generator(np.random.PCG64(seed=step))
# Generate start indices and convert to integer array
start_indices = rng.choice(
arr.shape[0] - seq_len, size=batch_size, replace=False
).astype(np.int64)
# Create batch data array
batch_data = np.zeros((batch_size, seq_len, data_dim + 3), dtype=np.float16)
# Fill batch data one sequence at a time
for i, start_idx in enumerate(start_indices):
batch_data[i] = arr[start_idx : start_idx + seq_len]
# Extract features
x = batch_data[:, :, :data_dim].astype(np.float16)
x = np.moveaxis(x, 1, 2)
phone = batch_data[:, :, data_dim].astype(np.int32)
speaker_id = batch_data[:, :, data_dim + 1].astype(np.int32)
phone_kind = batch_data[:, :, data_dim + 2].astype(np.int32)
# convert to torch tensors
x = torch.from_numpy(x).to(DEVICE)
x = (x - data_mean) / data_std
phone = torch.from_numpy(phone).to(DEVICE)
speaker_id = torch.from_numpy(speaker_id).to(DEVICE)
phone_kind = torch.from_numpy(phone_kind).to(DEVICE)
return x, speaker_id, phone, phone_kind
def get_data(config_path, seed=0):
with open(config_path, "r") as f:
config = yaml.safe_load(f)
data_config = config["data"]
model_config = config["model"]
device = "cuda" # if torch.cuda.is_available() else "cpu"
x, speaker_id, phone, phone_kind = get_batch(
seed,
1,
seq_len=model_config["input_size"],
DEVICE=device,
data_file=data_config["data_path"],
data_dim=data_config["data_dim"],
data_mean=data_config["data_mean"],
data_std=data_config["data_std"],
)
return x, speaker_id, phone, phone_kind
def plot_samples(samples, x):
# Create figure and axis
fig, ax = plt.subplots(figsize=(20, 4))
plt.tight_layout()
# Function to update frame
def update(frame):
ax.clear()
ax.text(
0.02,
0.98,
f"{frame+1} / 1000",
transform=ax.transAxes,
verticalalignment="top",
color="black",
)
if samples[frame].shape[1] > 1:
im = ax.imshow(
samples[frame].cpu().numpy()[0],
origin="lower",
aspect="auto",
interpolation="none",
vmin=-5,
vmax=5,
)
return [im]
elif samples[frame].shape[1] == 1:
line1 = ax.plot(samples[frame].cpu().numpy()[0, 0])[0]
line2 = ax.plot(x.cpu().numpy()[0, 0])[0]
plt.ylim(-10, 10)
return [line1, line2]
# Create animation with progress bar
anim = animation.FuncAnimation(
fig,
update,
frames=tqdm(range(len(samples)), desc="Generating animation"),
interval=1000 / 60,
blit=True, # 24 fps
)
# Save as MP4
anim.save("animation.mp4", fps=60, extra_args=["-vcodec", "libx264"])
plt.close()
model_cache = {}
def sample(
config_path,
ckpt_path,
cfg_scale=4.0,
num_sampling_steps=1000,
seed=0,
speaker_id=None,
phone=None,
phone_kind=None,
):
global model_cache
torch.manual_seed(seed)
torch.set_grad_enabled(False)
device = "cuda" # if torch.cuda.is_available() else "cpu"
with open(config_path, "r") as f:
config = yaml.safe_load(f)
data_config = config["data"]
model_config = config["model"]
if ckpt_path not in model_cache:
# Load model:
model = DiT_models[model_config["name"]](
input_size=model_config["input_size"],
embedding_vocab_size=model_config["embedding_vocab_size"],
learn_sigma=model_config["learn_sigma"],
in_channels=data_config["data_dim"],
).to(device)
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
model_cache[ckpt_path] = model
else:
model = model_cache[ckpt_path]
diffusion = create_diffusion(str(num_sampling_steps))
n = 1
z = torch.randn(n, data_config["data_dim"], speaker_id.shape[1], device=device)
attn_mask = speaker_id[:, None, :] == speaker_id[:, :, None]
attn_mask = attn_mask.unsqueeze(1)
attn_mask = torch.cat([attn_mask, attn_mask], 0)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
unconditional_value = model.y_embedder.unconditional_value
phone_null = torch.full_like(phone, unconditional_value)
speaker_id_null = torch.full_like(speaker_id, unconditional_value)
phone = torch.cat([phone, phone_null], 0)
speaker_id = torch.cat([speaker_id, speaker_id_null], 0)
phone_kind_null = torch.full_like(phone_kind, unconditional_value)
phone_kind = torch.cat([phone_kind, phone_kind_null], 0)
model_kwargs = dict(
phone=phone,
speaker_id=speaker_id,
phone_kind=phone_kind,
cfg_scale=cfg_scale,
attn_mask=attn_mask,
)
samples = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device,
)
samples = [s.chunk(2, dim=0)[0] for s in samples] # Remove null class samples
return samples
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--ckpt", type=str, required=True)
parser.add_argument("--cfg-scale", type=float, default=4.0)
parser.add_argument("--num-sampling-steps", type=int, default=1000)
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
x, speaker_id, phone, phone_kind = get_data(args.config, args.seed)
samples = sample(
args.config,
args.ckpt,
args.cfg_scale,
args.num_sampling_steps,
args.seed,
speaker_id,
phone,
phone_kind,
)
plot_samples(samples, x)
|