ntt123's picture
inference code
256e1f6
raw
history blame
17.4 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.attention.flex_attention import BlockMask, flex_attention
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.SiLU,
norm_layer=None,
bias=True,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
linear_layer = nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.norm = (
norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
)
self.fc2 = linear_layer(hidden_features, out_features, bias=bias)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.norm(x)
x = self.fc2(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.q_norm = RMSNorm(self.head_dim, eps=1e-5)
self.k_norm = RMSNorm(self.head_dim, eps=1e-5)
def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor:
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0)
if isinstance(attn_mask, torch.Tensor) or attn_mask is None:
q = self.q_norm(q)
k = self.k_norm(k)
# v = v
x = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
)
elif isinstance(attn_mask, BlockMask):
with torch.autocast(enabled=False, device_type="cuda"):
q = self.q_norm(q).half()
k = self.k_norm(k).half()
v = v.half()
x = flex_attention(q, k, v, block_mask=attn_mask)
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
return x
def modulate(x, shift, scale):
return x * (1 + scale) + shift
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
# use last class as unconditional value
use_cfg_embedding = dropout_prob > 0
if use_cfg_embedding:
self.unconditional_value = num_classes - 1
self.speaker_id_table = nn.Embedding(num_classes, hidden_size)
self.phone_table = nn.Embedding(num_classes, hidden_size)
self.phone_kind_table = nn.Embedding(num_classes, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, speaker_id, phone, phone_kind, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = (
torch.rand(speaker_id.shape[0], device=speaker_id.device)
< self.dropout_prob
)
else:
drop_ids = force_drop_ids == 1
speaker_id = torch.where(
drop_ids[:, None], self.unconditional_value, speaker_id
)
phone = torch.where(drop_ids[:, None], self.unconditional_value, phone)
phone_kind = torch.where(
drop_ids[:, None], self.unconditional_value, phone_kind
)
return speaker_id, phone, phone_kind
def forward(self, speaker_id, phone, phone_kind, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
speaker_id, phone, phone_kind = self.token_drop(
speaker_id, phone, phone_kind, force_drop_ids
)
speaker_id_embeddings = self.speaker_id_table(speaker_id)
phone_embeddings = self.phone_table(phone)
phone_kind_embeddings = self.phone_kind_table(phone_kind)
return speaker_id_embeddings, phone_embeddings, phone_kind_embeddings
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=nn.SiLU,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 6 * hidden_size, bias=True),
)
def forward(self, x, c, attn_mask=None):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.adaLN_modulation(c).chunk(6, dim=-1)
)
x = x + gate_msa * self.attn(
modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask
)
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True),
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=256,
in_channels=1024,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
embedding_vocab_size=1024,
):
super().__init__()
self.input_size = input_size
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.hidden_size = hidden_size
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.num_heads = num_heads
self.x_embedder = nn.Linear(in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(
embedding_vocab_size, hidden_size, class_dropout_prob
)
# Will use fixed sin-cos embedding:
self.register_buffer("pos_embed", torch.zeros(1, self.input_size, hidden_size))
self.blocks = nn.ModuleList(
[
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio)
for _ in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, 1, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_1d_sincos_pos_embed(self.pos_embed.shape[-1], self.input_size)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.bias, 0)
# Initialize label embedding table:
scale = 1.0 / math.sqrt(self.hidden_size)
nn.init.trunc_normal_(self.y_embedder.speaker_id_table.weight, std=scale)
nn.init.trunc_normal_(self.y_embedder.phone_table.weight, std=scale)
# Initialize timestep embedding MLP:
nn.init.trunc_normal_(self.t_embedder.mlp[0].weight, std=scale)
nn.init.trunc_normal_(self.t_embedder.mlp[2].weight, std=scale)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, speaker_id, phone, phone_kind, attn_mask=None):
"""
Forward pass of DiT.
x: (N, C, L) tensor of spatial inputs
t: (N,) tensor of diffusion timesteps
speaker_id: (N,) tensor of speaker IDs
phone: (N, L) tensor of phone labels
phone_kind: (N, L) tensor of phone kinds
"""
# (N, D), (N, L, D)
speaker_id_embedding, phone_embedding, phone_kind_embedding = self.y_embedder(
speaker_id, phone, phone_kind, self.training
)
t = self.t_embedder(t) # (N, D)
c = t # (N, D)
c = (
c[:, None, :]
+ speaker_id_embedding
+ phone_embedding
+ phone_kind_embedding
) # (N, L, D)
x = x.transpose(-1, -2) # Swap last two dimensions
x = self.x_embedder(x) + self.pos_embed[:, : x.shape[1], :] # (N, L, D)
for block in self.blocks:
x = block(x, c, attn_mask=attn_mask) # (N, L, D)
x = self.final_layer(x, c) # (N, L, 2 * out_channels)
x = x.transpose(-1, -2) # Swap last two dimensions
return x
def forward_with_cfg(
self, x, t, speaker_id, phone, phone_kind, cfg_scale, attn_mask=None
):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(
combined, t, speaker_id, phone, phone_kind, attn_mask=attn_mask
)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
# eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_1d_sincos_pos_embed(embed_dim, length, cls_token=False, extra_tokens=0):
"""
length: int of the length
return:
pos_embed: [length, embed_dim] or [1+length, embed_dim] (w/ or w/o cls_token)
"""
grid = np.arange(length, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate(
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0
)
return pos_embed
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
#################################################################################
# DiT Configs #
#################################################################################
def DiT_XL(**kwargs):
return DiT(depth=28, hidden_size=1152, num_heads=16, **kwargs)
def DiT_L(**kwargs):
return DiT(depth=24, hidden_size=1024, num_heads=16, **kwargs)
def DiT_B(**kwargs):
return DiT(depth=12, hidden_size=768, num_heads=12, **kwargs)
def DiT_S(**kwargs):
return DiT(depth=6, hidden_size=256, num_heads=4, **kwargs)
DiT_models = {"DiT-XL": DiT_XL, "DiT-L": DiT_L, "DiT-B": DiT_B, "DiT-S": DiT_S}