Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.attention.flex_attention import BlockMask, flex_attention | |
class Mlp(nn.Module): | |
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.SiLU, | |
norm_layer=None, | |
bias=True, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
linear_layer = nn.Linear | |
self.fc1 = linear_layer(in_features, hidden_features, bias=bias) | |
self.act = act_layer() | |
self.norm = ( | |
norm_layer(hidden_features) if norm_layer is not None else nn.Identity() | |
) | |
self.fc2 = linear_layer(hidden_features, out_features, bias=bias) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.norm(x) | |
x = self.fc2(x) | |
return x | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.q_norm = RMSNorm(self.head_dim, eps=1e-5) | |
self.k_norm = RMSNorm(self.head_dim, eps=1e-5) | |
def forward(self, x: torch.Tensor, attn_mask=None) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B, N, 3, self.num_heads, self.head_dim) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = qkv.unbind(0) | |
if isinstance(attn_mask, torch.Tensor) or attn_mask is None: | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
# v = v | |
x = F.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=attn_mask, | |
) | |
elif isinstance(attn_mask, BlockMask): | |
with torch.autocast(enabled=False, device_type="cuda"): | |
q = self.q_norm(q).half() | |
k = self.k_norm(k).half() | |
v = v.half() | |
x = flex_attention(q, k, v, block_mask=attn_mask) | |
x = x.transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
return x | |
def modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
# use last class as unconditional value | |
use_cfg_embedding = dropout_prob > 0 | |
if use_cfg_embedding: | |
self.unconditional_value = num_classes - 1 | |
self.speaker_id_table = nn.Embedding(num_classes, hidden_size) | |
self.phone_table = nn.Embedding(num_classes, hidden_size) | |
self.phone_kind_table = nn.Embedding(num_classes, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, speaker_id, phone, phone_kind, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = ( | |
torch.rand(speaker_id.shape[0], device=speaker_id.device) | |
< self.dropout_prob | |
) | |
else: | |
drop_ids = force_drop_ids == 1 | |
speaker_id = torch.where( | |
drop_ids[:, None], self.unconditional_value, speaker_id | |
) | |
phone = torch.where(drop_ids[:, None], self.unconditional_value, phone) | |
phone_kind = torch.where( | |
drop_ids[:, None], self.unconditional_value, phone_kind | |
) | |
return speaker_id, phone, phone_kind | |
def forward(self, speaker_id, phone, phone_kind, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
speaker_id, phone, phone_kind = self.token_drop( | |
speaker_id, phone, phone_kind, force_drop_ids | |
) | |
speaker_id_embeddings = self.speaker_id_table(speaker_id) | |
phone_embeddings = self.phone_table(phone) | |
phone_kind_embeddings = self.phone_kind_table(phone_kind) | |
return speaker_id_embeddings, phone_embeddings, phone_kind_embeddings | |
################################################################################# | |
# Core DiT Model # | |
################################################################################# | |
class DiTBlock(nn.Module): | |
""" | |
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. | |
""" | |
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): | |
super().__init__() | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.attn = Attention( | |
hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs | |
) | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=hidden_size, | |
hidden_features=mlp_hidden_dim, | |
act_layer=nn.SiLU, | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 6 * hidden_size, bias=True), | |
) | |
def forward(self, x, c, attn_mask=None): | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.adaLN_modulation(c).chunk(6, dim=-1) | |
) | |
x = x + gate_msa * self.attn( | |
modulate(self.norm1(x), shift_msa, scale_msa), attn_mask=attn_mask | |
) | |
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear( | |
hidden_size, patch_size * patch_size * out_channels, bias=True | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True), | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
input_size=256, | |
in_channels=1024, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
learn_sigma=True, | |
embedding_vocab_size=1024, | |
): | |
super().__init__() | |
self.input_size = input_size | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.hidden_size = hidden_size | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.num_heads = num_heads | |
self.x_embedder = nn.Linear(in_channels, hidden_size, bias=True) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
self.y_embedder = LabelEmbedder( | |
embedding_vocab_size, hidden_size, class_dropout_prob | |
) | |
# Will use fixed sin-cos embedding: | |
self.register_buffer("pos_embed", torch.zeros(1, self.input_size, hidden_size)) | |
self.blocks = nn.ModuleList( | |
[ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth) | |
] | |
) | |
self.final_layer = FinalLayer(hidden_size, 1, self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_1d_sincos_pos_embed(self.pos_embed.shape[-1], self.input_size) | |
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
w = self.x_embedder.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
nn.init.constant_(self.x_embedder.bias, 0) | |
# Initialize label embedding table: | |
scale = 1.0 / math.sqrt(self.hidden_size) | |
nn.init.trunc_normal_(self.y_embedder.speaker_id_table.weight, std=scale) | |
nn.init.trunc_normal_(self.y_embedder.phone_table.weight, std=scale) | |
# Initialize timestep embedding MLP: | |
nn.init.trunc_normal_(self.t_embedder.mlp[0].weight, std=scale) | |
nn.init.trunc_normal_(self.t_embedder.mlp[2].weight, std=scale) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def forward(self, x, t, speaker_id, phone, phone_kind, attn_mask=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, L) tensor of spatial inputs | |
t: (N,) tensor of diffusion timesteps | |
speaker_id: (N,) tensor of speaker IDs | |
phone: (N, L) tensor of phone labels | |
phone_kind: (N, L) tensor of phone kinds | |
""" | |
# (N, D), (N, L, D) | |
speaker_id_embedding, phone_embedding, phone_kind_embedding = self.y_embedder( | |
speaker_id, phone, phone_kind, self.training | |
) | |
t = self.t_embedder(t) # (N, D) | |
c = t # (N, D) | |
c = ( | |
c[:, None, :] | |
+ speaker_id_embedding | |
+ phone_embedding | |
+ phone_kind_embedding | |
) # (N, L, D) | |
x = x.transpose(-1, -2) # Swap last two dimensions | |
x = self.x_embedder(x) + self.pos_embed[:, : x.shape[1], :] # (N, L, D) | |
for block in self.blocks: | |
x = block(x, c, attn_mask=attn_mask) # (N, L, D) | |
x = self.final_layer(x, c) # (N, L, 2 * out_channels) | |
x = x.transpose(-1, -2) # Swap last two dimensions | |
return x | |
def forward_with_cfg( | |
self, x, t, speaker_id, phone, phone_kind, cfg_scale, attn_mask=None | |
): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward( | |
combined, t, speaker_id, phone, phone_kind, attn_mask=attn_mask | |
) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py | |
def get_1d_sincos_pos_embed(embed_dim, length, cls_token=False, extra_tokens=0): | |
""" | |
length: int of the length | |
return: | |
pos_embed: [length, embed_dim] or [1+length, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid = np.arange(length, dtype=np.float32) | |
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate( | |
[np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 | |
) | |
return pos_embed | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
################################################################################# | |
################################################################################# | |
# DiT Configs # | |
################################################################################# | |
def DiT_XL(**kwargs): | |
return DiT(depth=28, hidden_size=1152, num_heads=16, **kwargs) | |
def DiT_L(**kwargs): | |
return DiT(depth=24, hidden_size=1024, num_heads=16, **kwargs) | |
def DiT_B(**kwargs): | |
return DiT(depth=12, hidden_size=768, num_heads=12, **kwargs) | |
def DiT_S(**kwargs): | |
return DiT(depth=6, hidden_size=256, num_heads=4, **kwargs) | |
DiT_models = {"DiT-XL": DiT_XL, "DiT-L": DiT_L, "DiT-B": DiT_B, "DiT-S": DiT_S} | |