Spaces:
Running
Running
File size: 8,333 Bytes
994c4fd f8bd212 994c4fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
var log = console.log;
var ctx = null;
var canvas = null;
var RNN_SIZE = 512;
var cur_run = 0;
var randn = function() {
// Standard Normal random variable using Box-Muller transform.
var u = Math.random() * 0.999 + 1e-5;
var v = Math.random() * 0.999 + 1e-5;
return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v);
}
var rand_truncated_normal = function(low, high) {
while (true) {
r = randn();
if (r >= low && r <= high)
break;
// rejection sampling.
}
return r;
}
var char2idx = {'\x00': 0, ' ': 1, '!': 2, '"': 3, '#': 4, "'": 5, '(': 6, ')': 7, ',': 8, '-': 9, '.': 10, '0': 11, '1': 12, '2': 13, '3': 14, '4': 15, '5': 16, '6': 17, '7': 18, '8': 19, '9': 20, ':': 21, ';': 22, '?': 23, 'A': 24, 'B': 25, 'C': 26, 'D': 27, 'E': 28, 'F': 29, 'G': 30, 'H': 31, 'I': 32, 'J': 33, 'K': 34, 'L': 35, 'M': 36, 'N': 37, 'O': 38, 'P': 39, 'R': 40, 'S': 41, 'T': 42, 'U': 43, 'V': 44, 'W': 45, 'Y': 46, 'a': 47, 'b': 48, 'c': 49, 'd': 50, 'e': 51, 'f': 52, 'g': 53, 'h': 54, 'i': 55, 'j': 56, 'k': 57, 'l': 58, 'm': 59, 'n': 60, 'o': 61, 'p': 62, 'q': 63, 'r': 64, 's': 65, 't': 66, 'u': 67, 'v': 68, 'w': 69, 'x': 70, 'y': 71, 'z': 72};
var gru_core = function(input, weights, state, hidden_size) {
var [w_h,w_i,b] = weights;
var [w_h_z,w_h_a] = tf.split(w_h, [2 * hidden_size, hidden_size], 1);
var [b_z,b_a] = tf.split(b, [2 * hidden_size, hidden_size], 0);
gates_x = tf.matMul(input, w_i);
[zr_x,a_x] = tf.split(gates_x, [2 * hidden_size, hidden_size], 1);
zr_h = tf.matMul(state, w_h_z);
zr = tf.add(tf.add(zr_x, zr_h), b_z);
// fix this
[z,r] = tf.split(tf.sigmoid(zr), 2, 1);
a_h = tf.matMul(tf.mul(r, state), w_h_a);
a = tf.tanh(tf.add(tf.add(a_x, a_h), b_a));
next_state = tf.add(tf.mul(tf.sub(1., z), state), tf.mul(z, a));
return [next_state, next_state];
};
var generate = function() {
cur_run = cur_run + 1;
setTimeout(function() {
var counter = 2000;
tf.disposeVariables();
tf.engine().startScope();
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.beginPath();
dojob(cur_run);
}, 200);
return false;
}
var dojob = function(run_id) {
var text = document.getElementById("user-input").value;
if (text.length == 0) {
text = "The quick brown fox jumps over the lazy dog";
}
var cur_x = 50.;
var cur_y = 300.;
log(text);
original_text = text;
text = '' + text + ' ' + text;
text = Array.from(text).map(function(e) {
return char2idx[e]
})
var text_embed = WEIGHTS['rnn/~/embed_1__embeddings'];
indices = tf.tensor1d(text, 'int32');
text = text_embed.gather(indices);
filter = WEIGHTS['rnn/~/conv1_d__w'];
embed = tf.conv1d(text, filter, 1, 'same');
bias = tf.expandDims(WEIGHTS['rnn/~/conv1_d__b'], 0);
embed = tf.add(embed, bias);
var writer_embed = WEIGHTS['rnn/~/embed__embeddings'];
var e = document.getElementById("writers");
var wid = parseInt(e.value);
// log(wid);
wid = tf.tensor1d([wid], 'int32');
wid = writer_embed.gather(wid);
embed = tf.add(wid, embed);
// initial state
var gru0_hx = tf.zeros([1, RNN_SIZE]);
var gru1_hx = tf.zeros([1, RNN_SIZE]);
// var gru2_hx = tf.zeros([1, RNN_SIZE]);
var att_location = tf.zeros([1, 1]);
var att_context = tf.zeros([1, 73]);
var input = tf.tensor([[0., 0., 1.]]);
gru0_w_h = WEIGHTS['rnn/~/lstm_attention_core/~/gru__w_h'];
gru0_w_i = WEIGHTS['rnn/~/lstm_attention_core/~/gru__w_i'];
gru0_bias = WEIGHTS['rnn/~/lstm_attention_core/~/gru__b'];
gru1_w_h = WEIGHTS['rnn/~/lstm_attention_core/~/gru_1__w_h'];
gru1_w_i = WEIGHTS['rnn/~/lstm_attention_core/~/gru_1__w_i'];
gru1_bias = WEIGHTS['rnn/~/lstm_attention_core/~/gru_1__b'];
att_w = WEIGHTS['rnn/~/lstm_attention_core/~/linear__w'];
att_b = WEIGHTS['rnn/~/lstm_attention_core/~/linear__b'];
gmm_w = WEIGHTS['rnn/~/linear__w'];
gmm_b = WEIGHTS['rnn/~/linear__b'];
ruler = tf.tensor([...Array(text.shape[0]).keys()]);
var bias = parseInt(document.getElementById("bias").value) / 100 * 3;
cur_x = 50.;
cur_y = 400.;
var path = [];
var dx = 0.;
var dy = 0;
var eos = 1.;
var counter = 0;
function loop(my_run_id) {
if (my_run_id < cur_run) {
tf.disposeVariables();
tf.engine().endScope();
return;
}
counter++;
if (counter < 2000) {
[att_location,att_context,gru0_hx,gru1_hx,input] = tf.tidy(function() {
// Attention
const inp_0 = tf.concat([att_context, input], 1);
gru0_hx_ = gru0_hx;
[out_0,gru0_hx] = gru_core(inp_0, [gru0_w_h, gru0_w_i, gru0_bias], gru0_hx, RNN_SIZE);
tf.dispose(gru0_hx_);
const att_inp = tf.concat([att_context, input, out_0], 1);
const att_params = tf.add(tf.matMul(att_inp, att_w), att_b);
[alpha,beta,kappa] = tf.split(tf.softplus(att_params), 3, 1);
att_location_ = att_location;
att_location = tf.add(att_location, tf.div(kappa, 25.));
tf.dispose(att_location_)
const phi = tf.mul(alpha, tf.exp(tf.div(tf.neg(tf.square(tf.sub(att_location, ruler))), beta)));
att_context_ = att_context;
att_context = tf.sum(tf.mul(tf.expandDims(phi, 2), tf.expandDims(embed, 0)), 1)
tf.dispose(att_context_);
const inp_1 = tf.concat([input, out_0, att_context], 1);
tf.dispose(input);
gru1_hx_ = gru1_hx;
[out_1,gru1_hx] = gru_core(inp_1, [gru1_w_h, gru1_w_i, gru1_bias], gru1_hx, RNN_SIZE);
tf.dispose(gru1_hx_);
// GMM
const gmm_params = tf.add(tf.matMul(out_1, gmm_w), gmm_b);
[x,y,logstdx,logstdy,angle,log_weight,eos_logit] = tf.split(gmm_params, [5, 5, 5, 5, 5, 5, 1], 1);
// log_weight = tf.softmax(log_weight, 1);
// log_weight = tf.log(log_weight);
// log_weight = tf.mul(log_weight, 1. + bias);
// const idx = tf.multinomial(log_weight, 1).dataSync()[0];
// log_weight = tf.softmax(log_weight, 1);
// log_weight = tf.log(log_weight);
// log_weight = tf.mul(log_weight, 1. + bias);
const idx = tf.argMax(log_weight, 1).dataSync()[0];
x = x.dataSync()[idx];
y = y.dataSync()[idx];
const stdx = tf.exp(tf.sub(logstdx, bias)).dataSync()[idx];
const stdy = tf.exp(tf.sub(logstdy, bias)).dataSync()[idx];
angle = angle.dataSync()[idx];
e = tf.sigmoid(tf.mul(eos_logit, (1. + 0.*bias))).dataSync()[0];
const rx = rand_truncated_normal(-5, 5) * stdx;
const ry = rand_truncated_normal(-5, 5) * stdy;
x = x + Math.cos(-angle) * rx - Math.sin(-angle) * ry;
y = y + Math.sin(-angle) * rx + Math.cos(-angle) * ry;
if (Math.random() < e) {
e = 1.;
} else {
e = 0.;
}
input = tf.tensor([[x, y, e]]);
return [att_location, att_context, gru0_hx, gru1_hx, input];
});
[dx,dy,eos_] = input.dataSync();
dy = -dy * 3;
dx = dx * 3;
if (eos == 0.) {
ctx.beginPath();
ctx.moveTo(cur_x, cur_y, 0, 0);
ctx.lineTo(cur_x + dx, cur_y + dy);
ctx.stroke();
}
eos = eos_;
cur_x = cur_x + dx;
cur_y = cur_y + dy;
if (att_location.dataSync()[0] < original_text.length + 2) {
setTimeout(function() {loop(my_run_id);}, 0);
}
}
}
loop(run_id);
}
window.onload = function(e) {
//Setting up canvas
canvas = document.getElementById("hw-canvas");
ctx = canvas.getContext("2d");
ctx.canvas.width = window.innerWidth- 50;
ctx.canvas.height = window.innerHeight - 50;
}
|