Nupur Kumari commited on
Commit
25dd0a9
·
1 Parent(s): e09c88c

custom-diffusion-space

Browse files
Files changed (3) hide show
  1. README.md +0 -1
  2. app.py +2 -3
  3. inference.py +0 -1
README.md CHANGED
@@ -7,7 +7,6 @@ sdk: gradio
7
  sdk_version: 3.12.0
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
7
  sdk_version: 3.12.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,9 +1,8 @@
1
  #!/usr/bin/env python
2
- """Unofficial demo app for https://github.com/adobe-research/custom-diffusion.
3
 
4
  The code in this repo is partly adapted from the following repository:
5
  https://huggingface.co/spaces/hysts/LoRA-SD-training
6
- The license of the original code is MIT, which is specified in the README.md.
7
  """
8
 
9
  from __future__ import annotations
@@ -176,7 +175,7 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
176
  minimum=0,
177
  maximum=100000,
178
  step=1,
179
- value=1)
180
  with gr.Accordion('Other Parameters', open=False):
181
  num_steps = gr.Slider(label='Number of Steps',
182
  minimum=0,
 
1
  #!/usr/bin/env python
2
+ """Demo app for https://github.com/adobe-research/custom-diffusion.
3
 
4
  The code in this repo is partly adapted from the following repository:
5
  https://huggingface.co/spaces/hysts/LoRA-SD-training
 
6
  """
7
 
8
  from __future__ import annotations
 
175
  minimum=0,
176
  maximum=100000,
177
  step=1,
178
+ value=42)
179
  with gr.Accordion('Other Parameters', open=False):
180
  num_steps = gr.Slider(label='Number of Steps',
181
  minimum=0,
inference.py CHANGED
@@ -14,7 +14,6 @@ sys.path.insert(0, 'custom-diffusion')
14
 
15
 
16
  def load_model(text_encoder, tokenizer, unet, save_path, modifier_token, freeze_model='crossattn_kv'):
17
- logger.info("loading embeddings")
18
  st = torch.load(save_path)
19
  if 'text_encoder' in st:
20
  text_encoder.load_state_dict(st['text_encoder'])
 
14
 
15
 
16
  def load_model(text_encoder, tokenizer, unet, save_path, modifier_token, freeze_model='crossattn_kv'):
 
17
  st = torch.load(save_path)
18
  if 'text_encoder' in st:
19
  text_encoder.load_state_dict(st['text_encoder'])