Spaces:
Running
Running
File size: 10,380 Bytes
5af24b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import csv
import streamlit as st
import polars as pl
from io import BytesIO, StringIO
from gliner import GLiNER
from gliner_file import run_ner
import time
import torch
import platform
from typing import List
from streamlit_tags import st_tags # Importing the st_tags component for labels
# Streamlit page configuration
st.set_page_config(
page_title="GLiNER",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Function to load data from the uploaded file
@st.cache_data
def load_data(file):
"""
Loads an uploaded CSV or Excel file with resilient detection of delimiters and types.
"""
with st.spinner("Loading data, please wait..."):
try:
_, file_ext = os.path.splitext(file.name)
if file_ext.lower() in [".xls", ".xlsx"]:
return load_excel(file)
elif file_ext.lower() == ".csv":
return load_csv(file)
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
except Exception as e:
st.error("Error loading data:")
st.error(str(e))
return None
def load_excel(file):
"""
Loads an Excel file using `BytesIO` and `polars` for reduced latency.
"""
try:
file_bytes = BytesIO(file.read())
df = pl.read_excel(file_bytes, read_options={"ignore_errors": True})
return df
except Exception as e:
raise ValueError(f"Error reading the Excel file: {str(e)}")
def load_csv(file):
"""
Loads a CSV file by detecting the delimiter and using the quote character to handle internal delimiters.
"""
try:
file.seek(0) # Reset file pointer to ensure reading from the beginning
raw_data = file.read()
try:
file_content = raw_data.decode('utf-8')
except UnicodeDecodeError:
try:
file_content = raw_data.decode('latin1')
except UnicodeDecodeError:
raise ValueError("Unable to decode the file. Ensure it is encoded in UTF-8 or Latin-1.")
delimiters = [",", ";", "|", "\t", " "]
for delimiter in delimiters:
try:
df = pl.read_csv(
StringIO(file_content),
separator=delimiter,
quote_char='"',
try_parse_dates=True,
ignore_errors=True,
truncate_ragged_lines=True
)
return df
except Exception:
continue
raise ValueError("Unable to load the file with common delimiters.")
except Exception as e:
raise ValueError(f"Error reading the CSV file: {str(e)}")
@st.cache_resource
def load_model():
"""
Loads the GLiNER model into memory to avoid multiple reloads.
"""
try:
gpu_available = torch.cuda.is_available()
with st.spinner("Loading the GLiNER model... Please wait."):
device = torch.device("cuda" if gpu_available else "cpu")
model = GLiNER.from_pretrained(
"urchade/gliner_multi-v2.1"
).to(device)
model.eval()
if gpu_available:
device_name = torch.cuda.get_device_name(0)
st.success(f"GPU detected: {device_name}. Model loaded on GPU.")
else:
cpu_name = platform.processor()
st.warning(f"No GPU detected. Using CPU: {cpu_name}")
return model
except Exception as e:
st.error("Error loading the model:")
st.error(str(e))
return None
def perform_ner(filtered_df, selected_column, labels_list, threshold):
"""
Executes named entity recognition (NER) on the filtered data.
"""
try:
texts_to_analyze = filtered_df[selected_column].to_list()
total_rows = len(texts_to_analyze)
ner_results_list = []
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time()
for index, text in enumerate(texts_to_analyze, 1):
if st.session_state.stop_processing:
progress_text.text("Processing stopped by user.")
break
ner_results = run_ner(
st.session_state.gliner_model,
[text],
labels_list,
threshold=threshold
)
ner_results_list.append(ner_results)
progress = index / total_rows
elapsed_time = time.time() - start_time
progress_bar.progress(progress)
progress_text.text(f"Progress: {index}/{total_rows} - {progress * 100:.0f}% (Elapsed time: {elapsed_time:.2f}s)")
for label in labels_list:
extracted_entities = []
for entities in ner_results_list:
texts = [entity["text"] for entity in entities[0] if entity["label"] == label]
concatenated_texts = ", ".join(texts) if texts else ""
extracted_entities.append(concatenated_texts)
filtered_df = filtered_df.with_columns(pl.Series(name=label, values=extracted_entities))
end_time = time.time()
st.success(f"Processing completed in {end_time - start_time:.2f} seconds.")
return filtered_df
except Exception as e:
st.error(f"Error during NER processing: {str(e)}")
return filtered_df
def main():
st.title("Use NER with GliNER on your data file")
st.markdown("Prototype v0.1")
st.write("""
This application performs named entity recognition (NER) on your text data using GLiNER.
**Instructions:**
1. Upload a CSV or Excel file.
2. Select the column containing the text to analyze.
3. Filter the data if necessary.
4. Enter the NER labels you wish to detect.
5. Click "Start NER" to begin processing.
""")
if "stop_processing" not in st.session_state:
st.session_state.stop_processing = False
if "threshold" not in st.session_state:
st.session_state.threshold = 0.4
if "labels_list" not in st.session_state:
st.session_state.labels_list = []
st.session_state.gliner_model = load_model()
if st.session_state.gliner_model is None:
return
uploaded_file = st.sidebar.file_uploader("Choose a file (CSV or Excel)")
if uploaded_file is None:
st.warning("Please upload a file to continue.")
return
df = load_data(uploaded_file)
if df is None:
return
selected_column = st.selectbox("Select the column containing the text:", df.columns)
filter_text = st.text_input("Filter the column by text", "")
if filter_text:
filtered_df = df.filter(pl.col(selected_column).str.contains(f"(?i).*{filter_text}.*"))
else:
filtered_df = df
st.write("Filtered data preview:")
rows_per_page = 100
total_rows = len(filtered_df)
total_pages = (total_rows - 1) // rows_per_page + 1
if "current_page" not in st.session_state:
st.session_state.current_page = 1
def update_page(new_page):
st.session_state.current_page = new_page
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
first = st.button("⏮️ First")
with col2:
previous = st.button("⬅️ Previous")
with col3:
pass
with col4:
next = st.button("Next ➡️")
with col5:
last = st.button("Last ⏭️")
if first:
update_page(1)
elif previous:
if st.session_state.current_page > 1:
update_page(st.session_state.current_page - 1)
elif next:
if st.session_state.current_page < total_pages:
update_page(st.session_state.current_page + 1)
elif last:
update_page(total_pages)
with col3:
st.markdown(f"Page **{st.session_state.current_page}** of **{total_pages}**")
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
if not filtered_df.is_empty():
current_page_data = filtered_df.slice(start_idx, end_idx - start_idx)
st.write(f"Displaying {start_idx + 1} to {end_idx} of {total_rows} rows")
st.dataframe(current_page_data.to_pandas(), use_container_width=True)
else:
st.warning("The filtered DataFrame is empty. Please check your filters.")
st.slider("Set confidence threshold", 0.0, 1.0, st.session_state.threshold, 0.01, key="threshold")
st.session_state.labels_list = st_tags(
label="Enter the NER labels to detect",
text="Add more labels as needed",
value=st.session_state.labels_list,
key="1"
)
col1, col2 = st.columns(2)
with col1:
start_button = st.button("Start NER")
with col2:
stop_button = st.button("Stop")
if start_button:
st.session_state.stop_processing = False
if not st.session_state.labels_list:
st.warning("Please enter labels for NER.")
else:
updated_df = perform_ner(filtered_df, selected_column, st.session_state.labels_list, st.session_state.threshold)
st.write("**NER Results:**")
st.dataframe(updated_df.to_pandas(), use_container_width=True)
def to_excel(df):
output = BytesIO()
df.write_excel(output)
return output.getvalue()
def to_csv(df):
return df.write_csv().encode('utf-8')
download_col1, download_col2 = st.columns(2)
with download_col1:
st.download_button(
label="📥 Download as Excel",
data=to_excel(updated_df),
file_name="ner_results.xlsx"#,
#mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
with download_col2:
st.download_button(
label="📥 Download as CSV",
data=to_csv(updated_df),
file_name="ner_results.csv"#,
#mime="text/csv",
)
if stop_button:
st.session_state.stop_processing = True
st.warning("Processing stopped by user.")
if __name__ == "__main__":
main()
|