Spaces:
Running
Running
from gliner import GLiNER | |
from typing import List | |
def run_ner(model, texts: List[str], labels_list: List[str], threshold=0.4): | |
""" | |
Executes named entity recognition (NER) on a list of texts. | |
Parameters: | |
- model: loaded GLiNER model. | |
- texts: list of texts to analyze. | |
- labels_list: list of NER labels to detect. | |
- threshold: confidence threshold for predictions. | |
Returns: | |
- ner_results: list of dictionaries containing detected entities for each text. | |
""" | |
ner_results = [] | |
for text in texts: | |
try: | |
# Predict entities for the text | |
entities = model.predict_entities(text, labels_list, threshold=threshold) | |
ner_results.append(entities) | |
except Exception as e: | |
ner_results.append([]) | |
return ner_results |