Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -86,7 +86,6 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
|
|
86 |
model = DetrForObjectDetection.from_pretrained(model_name)
|
87 |
|
88 |
|
89 |
-
global xxresult
|
90 |
|
91 |
image = image_input
|
92 |
|
@@ -104,7 +103,7 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
|
|
104 |
total_text="Trench is Detected \n Image is Not Blurry \n"
|
105 |
else:
|
106 |
total_text="Trench is NOT Detected \n Image is Blurry \n"
|
107 |
-
|
108 |
print(type2)
|
109 |
print(type(type2))
|
110 |
|
@@ -113,26 +112,51 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
|
|
113 |
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
|
114 |
else:
|
115 |
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
|
116 |
-
|
117 |
-
xxresult=1
|
118 |
|
119 |
if det_lab.count(5) > 0:
|
120 |
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
|
121 |
else:
|
122 |
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
|
123 |
-
|
124 |
-
xxresult=1
|
125 |
|
126 |
return total_text
|
127 |
|
128 |
-
def tott():
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if xxresult==0:
|
131 |
-
|
132 |
else:
|
133 |
-
|
134 |
-
|
135 |
-
return text2
|
136 |
|
137 |
def set_example_image(example: list) -> dict:
|
138 |
return gr.Image.update(value=example[0])
|
@@ -190,7 +214,7 @@ with demo:
|
|
190 |
output = gr.Textbox(label="Reason for the results")
|
191 |
greet_btn = gr.Button("Results")
|
192 |
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
|
193 |
-
greet_btn.click(fn=tott, inputs=[], outputs=name, queue=True)
|
194 |
|
195 |
|
196 |
|
|
|
86 |
model = DetrForObjectDetection.from_pretrained(model_name)
|
87 |
|
88 |
|
|
|
89 |
|
90 |
image = image_input
|
91 |
|
|
|
103 |
total_text="Trench is Detected \n Image is Not Blurry \n"
|
104 |
else:
|
105 |
total_text="Trench is NOT Detected \n Image is Blurry \n"
|
106 |
+
|
107 |
print(type2)
|
108 |
print(type(type2))
|
109 |
|
|
|
112 |
total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
|
113 |
else:
|
114 |
total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
|
115 |
+
|
|
|
116 |
|
117 |
if det_lab.count(5) > 0:
|
118 |
total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
|
119 |
else:
|
120 |
total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
|
121 |
+
|
|
|
122 |
|
123 |
return total_text
|
124 |
|
125 |
+
def tott(model_name,url_input,image_input,threshold,type2):
|
126 |
+
|
127 |
+
#Extract model and feature extractor
|
128 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
model = DetrForObjectDetection.from_pretrained(model_name)
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
image = image_input
|
137 |
+
|
138 |
+
#Make prediction
|
139 |
+
processed_outputs = make_prediction(image, feature_extractor, model)
|
140 |
+
keep = processed_outputs["scores"] > threshold
|
141 |
+
det_lab = processed_outputs["labels"][keep].tolist()
|
142 |
+
xxresult=0
|
143 |
+
if det_lab.count(1) > 0:
|
144 |
+
else:
|
145 |
+
xxresult=1
|
146 |
+
if det_lab.count(4) > 0:
|
147 |
+
else:
|
148 |
+
if type2=="Trench Depth Measurement":
|
149 |
+
xxresult=1
|
150 |
+
if det_lab.count(5) > 0:
|
151 |
+
else:
|
152 |
+
if type2=="Trench Width Measurement":
|
153 |
+
xxresult=1
|
154 |
+
|
155 |
if xxresult==0:
|
156 |
+
return "The photo is ACCEPTED"
|
157 |
else:
|
158 |
+
return "The photo is NOT ACCEPTED"
|
159 |
+
|
|
|
160 |
|
161 |
def set_example_image(example: list) -> dict:
|
162 |
return gr.Image.update(value=example[0])
|
|
|
214 |
output = gr.Textbox(label="Reason for the results")
|
215 |
greet_btn = gr.Button("Results")
|
216 |
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
|
217 |
+
greet_btn.click(fn=tott, inputs=[options,img_input,img_input,slider_input,options2], outputs=name, queue=True)
|
218 |
|
219 |
|
220 |
|