omarhkh commited on
Commit
3c7e098
·
1 Parent(s): 02c19a7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -13
app.py CHANGED
@@ -86,7 +86,6 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
86
  model = DetrForObjectDetection.from_pretrained(model_name)
87
 
88
 
89
- global xxresult
90
 
91
  image = image_input
92
 
@@ -104,7 +103,7 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
104
  total_text="Trench is Detected \n Image is Not Blurry \n"
105
  else:
106
  total_text="Trench is NOT Detected \n Image is Blurry \n"
107
- xxresult=1
108
  print(type2)
109
  print(type(type2))
110
 
@@ -113,26 +112,51 @@ def detect_objects2(model_name,url_input,image_input,threshold,type2):
113
  total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
114
  else:
115
  total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
116
- if type2=="Trench Depth Measurement":
117
- xxresult=1
118
 
119
  if det_lab.count(5) > 0:
120
  total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
121
  else:
122
  total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
123
- if type2=="Trench Width Measurement":
124
- xxresult=1
125
 
126
  return total_text
127
 
128
- def tott():
129
- global xxresult
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  if xxresult==0:
131
- text2 = "The photo is ACCEPTED"
132
  else:
133
- text2 = "The photo is NOT ACCEPTED"
134
- xxresult==0
135
- return text2
136
 
137
  def set_example_image(example: list) -> dict:
138
  return gr.Image.update(value=example[0])
@@ -190,7 +214,7 @@ with demo:
190
  output = gr.Textbox(label="Reason for the results")
191
  greet_btn = gr.Button("Results")
192
  greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
193
- greet_btn.click(fn=tott, inputs=[], outputs=name, queue=True)
194
 
195
 
196
 
 
86
  model = DetrForObjectDetection.from_pretrained(model_name)
87
 
88
 
 
89
 
90
  image = image_input
91
 
 
103
  total_text="Trench is Detected \n Image is Not Blurry \n"
104
  else:
105
  total_text="Trench is NOT Detected \n Image is Blurry \n"
106
+
107
  print(type2)
108
  print(type(type2))
109
 
 
112
  total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
113
  else:
114
  total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
115
+
 
116
 
117
  if det_lab.count(5) > 0:
118
  total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
119
  else:
120
  total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
121
+
 
122
 
123
  return total_text
124
 
125
+ def tott(model_name,url_input,image_input,threshold,type2):
126
+
127
+ #Extract model and feature extractor
128
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
129
+
130
+
131
+
132
+ model = DetrForObjectDetection.from_pretrained(model_name)
133
+
134
+
135
+
136
+ image = image_input
137
+
138
+ #Make prediction
139
+ processed_outputs = make_prediction(image, feature_extractor, model)
140
+ keep = processed_outputs["scores"] > threshold
141
+ det_lab = processed_outputs["labels"][keep].tolist()
142
+ xxresult=0
143
+ if det_lab.count(1) > 0:
144
+ else:
145
+ xxresult=1
146
+ if det_lab.count(4) > 0:
147
+ else:
148
+ if type2=="Trench Depth Measurement":
149
+ xxresult=1
150
+ if det_lab.count(5) > 0:
151
+ else:
152
+ if type2=="Trench Width Measurement":
153
+ xxresult=1
154
+
155
  if xxresult==0:
156
+ return "The photo is ACCEPTED"
157
  else:
158
+ return "The photo is NOT ACCEPTED"
159
+
 
160
 
161
  def set_example_image(example: list) -> dict:
162
  return gr.Image.update(value=example[0])
 
214
  output = gr.Textbox(label="Reason for the results")
215
  greet_btn = gr.Button("Results")
216
  greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
217
+ greet_btn.click(fn=tott, inputs=[options,img_input,img_input,slider_input,options2], outputs=name, queue=True)
218
 
219
 
220