Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,926 Bytes
04c8db1 f75daf5 04c8db1 f75daf5 04c8db1 f75daf5 04c8db1 f75daf5 7567dc4 04c8db1 f75daf5 04c8db1 f75daf5 04c8db1 7804c1f f75daf5 be527a9 04c8db1 be527a9 508744a 36e2d86 04c8db1 3166d00 04c8db1 3166d00 04c8db1 be527a9 f75daf5 04c8db1 f75daf5 7567dc4 7804c1f 04c8db1 7804c1f f75daf5 04c8db1 46363ea 04c8db1 f75daf5 be527a9 7567dc4 171b6b3 7567dc4 171b6b3 7567dc4 171b6b3 7567dc4 be527a9 7567dc4 be527a9 f75daf5 7804c1f f75daf5 be527a9 f75daf5 be527a9 f75daf5 04c8db1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import argparse
import os
import shutil
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional, Tuple
from huggingface_hub import (CommitOperationAdd, HfApi, get_repo_discussions,
hf_hub_download)
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.onnx import (OnnxConfigWithPast, export,
validate_model_outputs)
from optimum.exporters.tasks import TasksManager
from transformers import AutoConfig, AutoTokenizer, is_torch_available
SPACES_URL = "https://huggingface.co/spaces/optimum/exporters"
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if (
discussion.status == "open"
and discussion.is_pull_request
and discussion.title == pr_title
):
return discussion
def convert_onnx(model_id: str, task: str, folder: str) -> List:
# Allocate the model
model = TasksManager.get_model_from_task(task, model_id, framework="pt")
model_type = model.config.model_type.replace("_", "-")
model_name = getattr(model, "name", None)
onnx_config_constructor = TasksManager.get_exporter_config_constructor(
model_type, "onnx", task=task, model_name=model_name
)
onnx_config = onnx_config_constructor(model.config)
needs_pad_token_id = (
isinstance(onnx_config, OnnxConfigWithPast)
and getattr(model.config, "pad_token_id", None) is None
and task in ["sequence_classification"]
)
if needs_pad_token_id:
# if args.pad_token_id is not None:
# model.config.pad_token_id = args.pad_token_id
try:
tok = AutoTokenizer.from_pretrained(model_id)
model.config.pad_token_id = tok.pad_token_id
except Exception:
raise ValueError(
"Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument"
)
# Ensure the requested opset is sufficient
opset = onnx_config.DEFAULT_ONNX_OPSET
output = Path(folder).joinpath("model.onnx")
onnx_inputs, onnx_outputs = export(
model,
onnx_config,
opset,
output,
)
atol = onnx_config.ATOL_FOR_VALIDATION
if isinstance(atol, dict):
atol = atol[task.replace("-with-past", "")]
try:
validate_model_outputs(onnx_config, model, output, onnx_outputs, atol)
print(f"All good, model saved at: {output}")
except ValueError:
print(f"An error occured, but the model was saved at: {output.as_posix()}")
n_files = len(
[
name
for name in os.listdir(folder)
if os.path.isfile(os.path.join(folder, name)) and not name.startswith(".")
]
)
if n_files == 1:
operations = [
CommitOperationAdd(
path_in_repo=file_name, path_or_fileobj=os.path.join(folder, file_name)
)
for file_name in os.listdir(folder)
]
else:
operations = [
CommitOperationAdd(
path_in_repo=os.path.join("onnx", file_name),
path_or_fileobj=os.path.join(folder, file_name),
)
for file_name in os.listdir(folder)
]
return operations
def convert(
api: "HfApi", model_id: str, task: str, force: bool = False
) -> Tuple[int, "CommitInfo"]:
pr_title = "Adding ONNX file of this model"
info = api.model_info(model_id)
filenames = set(s.rfilename for s in info.siblings)
requesting_user = api.whoami()["name"]
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_id)
except Exception as e:
return (
f"### Error: {e}. Please pass explicitely the task as it could not be infered.",
None,
)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
pr = previous_pr(api, model_id, pr_title)
if "model.onnx" in filenames and not force:
raise Exception(f"Model {model_id} is already converted, skipping..")
elif pr is not None and not force:
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
new_pr = pr
raise Exception(
f"Model {model_id} already has an open PR check out [{url}]({url})"
)
else:
operations = convert_onnx(model_id, task, folder)
commit_description = f"""
Beep boop I am the [ONNX export bot ๐ค๐๏ธ]({SPACES_URL}). On behalf of [{requesting_user}](https://huggingface.co/{requesting_user}), I would like to add to this repository the model converted to ONNX.
What is ONNX? It stands for "Open Neural Network Exchange", and is the most commonly used open standard for machine learning interoperability. You can find out more at [onnx.ai](https://onnx.ai/)!
The exported ONNX model can be then be consumed by various backends as TensorRT or TVM, or simply be used in a few lines with ๐ค Optimum through ONNX Runtime, check out how [here](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models)!
"""
new_pr = api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=pr_title,
commit_description=commit_description, # TODO
create_pr=True,
)
finally:
shutil.rmtree(folder)
return "0", new_pr
if __name__ == "__main__":
DESCRIPTION = """
Simple utility tool to convert automatically a model on the hub to onnx format.
It is PyTorch exclusive for now.
It works by downloading the weights (PT), converting them locally, and uploading them back
as a PR on the hub.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"--model_id",
type=str,
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
)
parser.add_argument(
"--task",
type=str,
help="The task the model is performing",
)
parser.add_argument(
"--force",
action="store_true",
help="Create the PR even if it already exists of if the model was already converted.",
)
args = parser.parse_args()
api = HfApi()
convert(api, args.model_id, task=args.task, force=args.force)
|