Chris-lab / utils /model.py
kz209
update
203771e
raw
history blame
2.12 kB
from transformers import AutoTokenizer
import transformers
import torch
from huggingface_hub import login
import os
import logging
login(token = os.getenv('HF_TOKEN'))
class Model(torch.nn.Module):
number_of_models = 0
__model_list__ = [
"lmsys/vicuna-7b-v1.5",
"google-t5/t5-large",
"mistralai/Mistral-7B-Instruct-v0.1",
"meta-llama/Meta-Llama-3.1-8B-Instruct"
]
def __init__(self, model_name="lmsys/vicuna-7b-v1.5") -> None:
super(Model, self).__init__()
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.name = model_name
logging.info(f'start loading model {self.name}')
self.pipeline = transformers.pipeline(
"summarization" if model_name=="google-t5/t5-large" else "text-generation",
model=model_name,
tokenizer=self.tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
)
logging.info(f'Loaded model {self.name}')
self.update()
@classmethod
def update(cls):
cls.number_of_models += 1
def return_mode_name(self):
return self.name
def return_tokenizer(self):
return self.tokenizer
def return_model(self):
return self.pipeline
def gen(self, content, temp=0.1, max_length=500):
if self.name == "google-t5/t5-large":
sequences = self.pipeline(
content,
max_new_tokens=max_length,
do_sample=True,
temperature=temp,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
)
return sequences[-1]['summary_text']
else:
sequences = self.pipeline(
content,
max_new_tokens=max_length,
do_sample=True,
temperature=temp,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
return_full_text=False
)
return sequences[-1]['generated_text']