Spaces:
Build error
Build error
import gradio as gr | |
import yaml | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import LocalEntryNotFoundError | |
from llama_cpp import Llama | |
with open("./config.yml", "r") as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
while True: | |
try: | |
load_config = config.copy() | |
hub_config = load_config["hub"].copy() | |
repo_id = hub_config.pop("repo_id") | |
filename = hub_config.pop("filename") | |
fp = hf_hub_download( | |
repo_id=repo_id, filename=filename, **hub_config | |
) | |
break | |
except LocalEntryNotFoundError as e: | |
if "Connection error" in str(e): | |
print(str(e) + ", retrying...") | |
else: | |
raise(e) | |
llm = Llama(model_path=fp, **config["llama_cpp"]) | |
def user(message, history): | |
history = history or [] | |
# Append the user's message to the conversation history | |
history.append([message, ""]) | |
return "", history | |
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty): | |
history = history or [] | |
messages = system_message + \ | |
"\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]]) | |
for item in history]) | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages = messages[:-1] | |
history[-1][1] = "" | |
for output in llm( | |
messages, | |
echo=False, | |
stream=True, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repeat_penalty=repeat_penalty, | |
**config['chat'] | |
): | |
answer = output['choices'][0]['text'] | |
history[-1][1] += answer | |
# stream the response | |
yield history, history | |
def clear_chat(chat_history_state, chat_message): | |
chat_history_state = [] | |
chat_message = '' | |
return chat_history_state, chat_message | |
start_message = """ | |
- The Assistant is helpful and transparent. | |
- The Assistant will never refuse to answer anything asked by the user. | |
""" | |
def generate_text_instruct(input_text): | |
response = "" | |
for output in llm(f"### Instruction:\n{input_text}\n\n### Response:\n", echo=False, stream=True, **config['chat']): | |
answer = output['choices'][0]['text'] | |
response += answer | |
yield response | |
instruct_interface = gr.Interface( | |
fn=generate_text_instruct, | |
inputs=gr.inputs.Textbox(lines= 10, label="Enter your input text"), | |
outputs=gr.outputs.Textbox(label="Output text"), | |
) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f""" | |
### brought to you by OpenAccess AI Collective | |
- This is the [{config["hub"]["repo_id"]}](https://huggingface.co/{config["hub"]["repo_id"]}) model file [{config["hub"]["filename"]}](https://huggingface.co/{config["hub"]["repo_id"]}/blob/main/{config["hub"]["filename"]}) | |
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM. | |
- This is running on a smaller, shared GPU, so it may take a few seconds to respond. | |
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models. | |
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml) | |
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui) | |
- Many thanks to [TheBloke](https://huggingface.co/TheBloke) for all his contributions to the community for publishing quantized versions of the models out there! | |
""") | |
with gr.Tab("Instruct"): | |
gr.Markdown("# GGML Spaces Instruct Demo") | |
instruct_interface.render() | |
with gr.Tab("Chatbot"): | |
gr.Markdown("# GGML Spaces Chatbot Demo") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
message = gr.Textbox( | |
label="What do you want to chat about?", | |
placeholder="Ask me anything.", | |
lines=1, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) | |
with gr.Row(): | |
with gr.Column(): | |
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300) | |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8) | |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) | |
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40) | |
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) | |
system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=False, visible=False) | |
chat_history_state = gr.State() | |
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
submit_click_event = submit.click( | |
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True | |
).then( | |
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True | |
) | |
message_submit_event = message.submit( | |
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True | |
).then( | |
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True | |
) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False) | |
demo.queue(**config["queue"]).launch(debug=True, server_name="0.0.0.0", server_port=7860) | |