Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
kennymckormick
commited on
Commit
·
63ffee3
1
Parent(s):
0c31bc1
add 'Rank'
Browse files
app.py
CHANGED
@@ -25,14 +25,18 @@ with gr.Blocks() as demo:
|
|
25 |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
|
26 |
table = generate_table(results, DEFAULT_BENCH)
|
27 |
table['Rank'] = list(range(1, len(table) + 1))
|
|
|
28 |
type_map = check_box['type_map']
|
|
|
|
|
29 |
checkbox_group = gr.CheckboxGroup(
|
30 |
choices=check_box['all'],
|
31 |
value=check_box['required'],
|
32 |
label='Evaluation Dimension',
|
33 |
interactive=True,
|
34 |
)
|
35 |
-
|
|
|
36 |
with gr.Row():
|
37 |
model_size = gr.CheckboxGroup(
|
38 |
choices=MODEL_SIZE,
|
@@ -55,7 +59,8 @@ with gr.Blocks() as demo:
|
|
55 |
|
56 |
def filter_df(fields, model_size, model_type):
|
57 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource', 'Verified']
|
58 |
-
headers = check_box['essential'] + fields
|
|
|
59 |
new_fields = [field for field in fields if field not in filter_list]
|
60 |
df = generate_table(results, new_fields)
|
61 |
|
@@ -90,13 +95,17 @@ with gr.Blocks() as demo:
|
|
90 |
s = structs[i]
|
91 |
s.table, s.check_box = BUILD_L2_DF(results, dataset)
|
92 |
s.type_map = s.check_box['type_map']
|
|
|
|
|
93 |
s.checkbox_group = gr.CheckboxGroup(
|
94 |
choices=s.check_box['all'],
|
95 |
value=s.check_box['required'],
|
96 |
label=f'{dataset} CheckBoxes',
|
97 |
interactive=True,
|
98 |
)
|
99 |
-
s.headers = s.check_box['essential'] + s.checkbox_group.
|
|
|
|
|
100 |
with gr.Row():
|
101 |
s.model_size = gr.CheckboxGroup(
|
102 |
choices=MODEL_SIZE,
|
@@ -120,7 +129,7 @@ with gr.Blocks() as demo:
|
|
120 |
|
121 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
122 |
s = structs[DATASETS.index(dataset_name)]
|
123 |
-
headers = s.check_box['essential'] + fields
|
124 |
df = cp.deepcopy(s.table)
|
125 |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
126 |
df = df[df['flag']]
|
@@ -129,6 +138,7 @@ with gr.Blocks() as demo:
|
|
129 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
130 |
df = df[df['flag']]
|
131 |
df.pop('flag')
|
|
|
132 |
|
133 |
comp = gr.components.DataFrame(
|
134 |
value=df[headers],
|
|
|
25 |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS)
|
26 |
table = generate_table(results, DEFAULT_BENCH)
|
27 |
table['Rank'] = list(range(1, len(table) + 1))
|
28 |
+
|
29 |
type_map = check_box['type_map']
|
30 |
+
type_map['Rank'] = 'number'
|
31 |
+
|
32 |
checkbox_group = gr.CheckboxGroup(
|
33 |
choices=check_box['all'],
|
34 |
value=check_box['required'],
|
35 |
label='Evaluation Dimension',
|
36 |
interactive=True,
|
37 |
)
|
38 |
+
|
39 |
+
headers = ['Rank'] + check_box['essential'] + checkbox_group.value
|
40 |
with gr.Row():
|
41 |
model_size = gr.CheckboxGroup(
|
42 |
choices=MODEL_SIZE,
|
|
|
59 |
|
60 |
def filter_df(fields, model_size, model_type):
|
61 |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource', 'Verified']
|
62 |
+
headers = ['Rank'] + check_box['essential'] + fields
|
63 |
+
|
64 |
new_fields = [field for field in fields if field not in filter_list]
|
65 |
df = generate_table(results, new_fields)
|
66 |
|
|
|
95 |
s = structs[i]
|
96 |
s.table, s.check_box = BUILD_L2_DF(results, dataset)
|
97 |
s.type_map = s.check_box['type_map']
|
98 |
+
s.type_map['Rank'] = 'number'
|
99 |
+
|
100 |
s.checkbox_group = gr.CheckboxGroup(
|
101 |
choices=s.check_box['all'],
|
102 |
value=s.check_box['required'],
|
103 |
label=f'{dataset} CheckBoxes',
|
104 |
interactive=True,
|
105 |
)
|
106 |
+
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.values
|
107 |
+
s.table['Rank'] = list(range(1, len(s.table) + 1))
|
108 |
+
|
109 |
with gr.Row():
|
110 |
s.model_size = gr.CheckboxGroup(
|
111 |
choices=MODEL_SIZE,
|
|
|
129 |
|
130 |
def filter_df_l2(dataset_name, fields, model_size, model_type):
|
131 |
s = structs[DATASETS.index(dataset_name)]
|
132 |
+
headers = ['Rank'] + s.check_box['essential'] + fields
|
133 |
df = cp.deepcopy(s.table)
|
134 |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']]
|
135 |
df = df[df['flag']]
|
|
|
138 |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))]
|
139 |
df = df[df['flag']]
|
140 |
df.pop('flag')
|
141 |
+
df['Rank'] = list(range(1, len(df) + 1))
|
142 |
|
143 |
comp = gr.components.DataFrame(
|
144 |
value=df[headers],
|