File size: 7,424 Bytes
486004a
c26f143
 
 
 
 
 
486004a
 
c26f143
 
 
 
 
 
486004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26f143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486004a
c26f143
 
 
 
 
 
 
 
486004a
 
 
 
 
 
 
c26f143
 
 
486004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26f143
486004a
 
 
 
 
 
 
 
 
c26f143
486004a
c26f143
486004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c26f143
486004a
 
 
 
 
 
 
 
 
 
 
 
 
c26f143
486004a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import plotly.graph_objects as go
import numpy as np
import json

# 관심 슀페이슀 URL λ¦¬μŠ€νŠΈμ™€ 정보
target_spaces = {
    "ginipick/FLUXllama": "https://huggingface.co/spaces/ginipick/FLUXllama",
    "ginipick/SORA-3D": "https://huggingface.co/spaces/ginipick/SORA-3D",
    "fantaxy/Sound-AI-SFX": "https://huggingface.co/spaces/fantaxy/Sound-AI-SFX",
    "fantos/flx8lora": "https://huggingface.co/spaces/fantos/flx8lora",
    "ginigen/Canvas": "https://huggingface.co/spaces/ginigen/Canvas",
    "fantaxy/erotica": "https://huggingface.co/spaces/fantaxy/erotica",
    "ginipick/time-machine": "https://huggingface.co/spaces/ginipick/time-machine",
    "aiqcamp/FLUX-VisionReply": "https://huggingface.co/spaces/aiqcamp/FLUX-VisionReply",
    "openfree/Tetris-Game": "https://huggingface.co/spaces/openfree/Tetris-Game",
    "openfree/everychat": "https://huggingface.co/spaces/openfree/everychat",
    "VIDraft/mouse1": "https://huggingface.co/spaces/VIDraft/mouse1",
    "kolaslab/alpha-go": "https://huggingface.co/spaces/kolaslab/alpha-go",
    "ginipick/text3d": "https://huggingface.co/spaces/ginipick/text3d",
    "openfree/trending-board": "https://huggingface.co/spaces/openfree/trending-board",
    "cutechicken/tankwar": "https://huggingface.co/spaces/cutechicken/tankwar",
    "openfree/game-jewel": "https://huggingface.co/spaces/openfree/game-jewel",
    "VIDraft/mouse-chat": "https://huggingface.co/spaces/VIDraft/mouse-chat",
    "ginipick/AccDiffusion": "https://huggingface.co/spaces/ginipick/AccDiffusion",
    "aiqtech/Particle-Accelerator-Simulation": "https://huggingface.co/spaces/aiqtech/Particle-Accelerator-Simulation",
    "openfree/GiniGEN": "https://huggingface.co/spaces/openfree/GiniGEN",
    "kolaslab/3DAudio-Spectrum-Analyzer": "https://huggingface.co/spaces/kolaslab/3DAudio-Spectrum-Analyzer",
    "openfree/trending-news-24": "https://huggingface.co/spaces/openfree/trending-news-24",
    "ginipick/Realtime-FLUX": "https://huggingface.co/spaces/ginipick/Realtime-FLUX",
    "VIDraft/prime-number": "https://huggingface.co/spaces/VIDraft/prime-number",
    "kolaslab/zombie-game": "https://huggingface.co/spaces/kolaslab/zombie-game",
    "fantos/miro-game": "https://huggingface.co/spaces/fantos/miro-game",
    "kolaslab/shooting": "https://huggingface.co/spaces/kolaslab/shooting",
    "VIDraft/Mouse-Hackathon": "https://huggingface.co/spaces/VIDraft/Mouse-Hackathon",
    "upstage/open-ko-llm-leaderboard": "https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard",
    "LGAI-EXAONE/EXAONE-3.5-Instruct-Demo": "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo",
    "NCSOFT/VARCO_Arena": "https://huggingface.co/spaces/NCSOFT/VARCO_Arena"
}

def get_trending_spaces(date):
    url = f"https://huggingface.co/api/spaces/trending?date={date}&limit=300"
    response = requests.get(url)
    if response.status_code == 200:
        return response.json()
    return None

def get_space_rank(spaces, space_id):
    for idx, space in enumerate(spaces, 1):
        if space.get('id', '') == space_id:
            return idx
    return None

def fetch_and_analyze_data():
    start_date = datetime(2023, 12, 1)
    end_date = datetime(2023, 12, 31)
    dates = [(start_date + timedelta(days=x)).strftime('%Y-%m-%d') 
             for x in range((end_date - start_date).days + 1)]
    
    trending_data = {}
    target_space_ranks = {space: [] for space in target_spaces.keys()}
    
    for date in dates:
        spaces = get_trending_spaces(date)
        if spaces:
            trending_data[date] = spaces
            for space_id in target_spaces.keys():
                rank = get_space_rank(spaces, space_id)
                target_space_ranks[space_id].append(rank)
    
    return trending_data, target_space_ranks, dates

def create_trend_plot(trending_data, target_space_ranks, dates):
    fig = go.Figure()
    
    for space_id, ranks in target_space_ranks.items():
        fig.add_trace(go.Scatter(
            x=dates,
            y=ranks,
            name=space_id,
            mode='lines+markers'
        ))
    
    fig.update_layout(
        title='Trending Ranks Over Time',
        xaxis_title='Date',
        yaxis_title='Rank',
        yaxis_autorange='reversed',
        height=800
    )
    
    return fig

def create_space_info_html(trending_data):
    latest_date = max(trending_data.keys())
    latest_spaces = trending_data[latest_date]
    
    html_content = "<div style='padding: 20px;'>"
    html_content += f"<h2>Latest Rankings ({latest_date})</h2>"
    
    for space_id, url in target_spaces.items():
        rank = get_space_rank(latest_spaces, space_id)
        if rank:
            space_info = next((s for s in latest_spaces if s['id'] == space_id), None)
            if space_info:
                html_content += f"""
                <div style='margin: 20px 0; padding: 15px; border: 1px solid #ddd; border-radius: 8px;'>
                    <h3>#{rank} - {space_id}</h3>
                    <p>πŸ‘ Likes: {space_info.get('likes', 'N/A')}</p>
                    <p>πŸ“ {space_info.get('title', 'N/A')}</p>
                    <p>{space_info.get('description', 'N/A')[:100]}...</p>
                    <a href='{url}' target='_blank' style='color: blue;'>Visit Space πŸ”—</a>
                </div>
                """
    
    html_content += "</div>"
    return html_content

def export_data(trending_data, dates):
    df_data = []
    for date in dates:
        spaces = trending_data.get(date, [])
        for space_id in target_spaces.keys():
            rank = get_space_rank(spaces, space_id)
            if rank:
                space_info = next((s for s in spaces if s['id'] == space_id), None)
                if space_info:
                    df_data.append({
                        'Date': date,
                        'Space ID': space_id,
                        'Rank': rank,
                        'Likes': space_info.get('likes', 'N/A'),
                        'Title': space_info.get('title', 'N/A'),
                        'URL': target_spaces[space_id]
                    })
    
    df = pd.DataFrame(df_data)
    return df

def main_interface():
    trending_data, target_space_ranks, dates = fetch_and_analyze_data()
    
    # νŠΈλ Œλ“œ ν”Œλ‘― 생성
    plot = create_trend_plot(trending_data, target_space_ranks, dates)
    
    # 슀페이슀 정보 HTML 생성
    space_info = create_space_info_html(trending_data)
    
    # 데이터 읡슀포트
    df = export_data(trending_data, dates)
    
    return plot, space_info, df

# Gradio μΈν„°νŽ˜μ΄μŠ€ 생성
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ€— HuggingFace Spaces Trending Analysis")
    
    with gr.Tab("Trending Analysis"):
        plot_output = gr.Plot()
        info_output = gr.HTML()
    
    with gr.Tab("Export Data"):
        df_output = gr.DataFrame()
    
    refresh_btn = gr.Button("Refresh Data")
    refresh_btn.click(
        main_interface,
        outputs=[plot_output, info_output, df_output]
    )
    
    # 초기 데이터 λ‘œλ“œ
    plot, info, df = main_interface()
    plot_output.update(value=plot)
    info_output.update(value=info)
    df_output.update(value=df)

# Gradio μ•± μ‹€ν–‰
demo.launch()