roubaofeipi commited on
Commit
045e583
·
verified ·
1 Parent(s): b7323ae

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +189 -0
app.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import torch
4
+ import sys
5
+ sys.path.append(os.path.abspath('./'))
6
+ from inference.utils import *
7
+ from train import WurstCoreB
8
+ from gdf import DDPMSampler
9
+ from train import WurstCore_t2i as WurstCoreC
10
+ import numpy as np
11
+ import random
12
+ import argparse
13
+ import gradio as gr
14
+
15
+
16
+ def parse_args():
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument( '--height', type=int, default=2560, help='image height')
19
+ parser.add_argument('--width', type=int, default=5120, help='image width')
20
+ parser.add_argument('--seed', type=int, default=123, help='random seed')
21
+ parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
22
+ parser.add_argument('--config_c', type=str,
23
+ default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
24
+ parser.add_argument('--config_b', type=str,
25
+ default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
26
+ parser.add_argument( '--prompt', type=str,
27
+ default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
28
+ parser.add_argument( '--num_image', type=int, default=1, help='how many images generated')
29
+ parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
30
+ parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
31
+ parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
32
+ args = parser.parse_args()
33
+ return args
34
+
35
+ def clear_image():
36
+ return None
37
+ def load_message(height, width, seed, prompt, args, stage_a_tiled):
38
+ args.height = height
39
+ args.width = width
40
+ args.seed = seed
41
+ args.prompt = prompt + ' rich detail, 4k, high quality'
42
+ args.stage_a_tiled = stage_a_tiled
43
+ return args
44
+ @spaces.GPU(duration=120)
45
+ def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
46
+ global args
47
+ args = load_message(height, width, seed, prompt, args, stage_a_tiled)
48
+ torch.manual_seed(args.seed)
49
+ random.seed(args.seed)
50
+ np.random.seed(args.seed)
51
+ dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
52
+
53
+ captions = [args.prompt] * args.num_image
54
+ height, width = args.height, args.width
55
+ batch_size=1
56
+ height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
57
+ stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
58
+ stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
59
+
60
+ # Stage C Parameters
61
+ extras.sampling_configs['cfg'] = 4
62
+ extras.sampling_configs['shift'] = 1
63
+ extras.sampling_configs['timesteps'] = 20
64
+ extras.sampling_configs['t_start'] = 1.0
65
+ extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
66
+
67
+
68
+
69
+ # Stage B Parameters
70
+ extras_b.sampling_configs['cfg'] = 1.1
71
+ extras_b.sampling_configs['shift'] = 1
72
+ extras_b.sampling_configs['timesteps'] = 10
73
+ extras_b.sampling_configs['t_start'] = 1.0
74
+
75
+ for _, caption in enumerate(captions):
76
+
77
+
78
+ batch = {'captions': [caption] * batch_size}
79
+ #conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
80
+ #unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
81
+
82
+ conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
83
+ unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
84
+
85
+
86
+ with torch.no_grad():
87
+
88
+
89
+ models.generator.cuda()
90
+ print('STAGE C GENERATION***************************')
91
+ with torch.cuda.amp.autocast(dtype=dtype):
92
+ sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
93
+
94
+
95
+
96
+ models.generator.cpu()
97
+ torch.cuda.empty_cache()
98
+
99
+ conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
100
+ unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
101
+ conditions_b['effnet'] = sampled_c
102
+ unconditions_b['effnet'] = torch.zeros_like(sampled_c)
103
+ print('STAGE B + A DECODING***************************')
104
+
105
+ with torch.cuda.amp.autocast(dtype=dtype):
106
+ sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
107
+
108
+ torch.cuda.empty_cache()
109
+ imgs = show_images(sampled)
110
+ #for idx, img in enumerate(imgs):
111
+ #print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
112
+ #img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
113
+
114
+ return imgs[0]
115
+ #print('finished! Results ')
116
+
117
+
118
+ with gr.Blocks() as demo:
119
+ with gr.Column():
120
+ with gr.Row():
121
+ with gr.Column():
122
+ height = gr.Slider(value=2304, step=32, minimum=1536, maximum=4096, label='Height')
123
+ width = gr.Slider(value=4096, step=32, minimum=1536, maximum=5120, label='Width')
124
+ seed = gr.Number(value=123, step=1, label='Random Seed')
125
+ prompt = gr.Textbox(value='', max_lines=4, label='Text Prompt')
126
+ cfg = gr.Slider(value=4, step=0.1, minimum=3, maximum=10, label='CFG')
127
+ timesteps = gr.Slider(value=20, step=1, minimum=10, maximum=50, label='Timesteps')
128
+ stage_a_tiled = gr.Checkbox(value=False, label='Stage_a_tiled')
129
+ with gr.Row():
130
+ clear_button = gr.Button("Clear!")
131
+ polish_button = gr.Button("Submit!")
132
+ with gr.Column():
133
+ output_img = gr.Image(label='Output Image', sources=None)
134
+ with gr.Column():
135
+ prompt2 = gr.Textbox(
136
+ value='''
137
+ 1. a happy cat
138
+ 2. a happy girl
139
+ ''', label='Text prompt examples'
140
+ )
141
+
142
+ polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
143
+ polish_button.click(clear_image, inputs=[], outputs=output_img)
144
+
145
+ if __name__ == "__main__":
146
+
147
+ args = parse_args()
148
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
149
+
150
+ config_file = args.config_c
151
+ with open(config_file, "r", encoding="utf-8") as file:
152
+ loaded_config = yaml.safe_load(file)
153
+
154
+ core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
155
+
156
+ # SETUP STAGE B
157
+ config_file_b = args.config_b
158
+ with open(config_file_b, "r", encoding="utf-8") as file:
159
+ config_file_b = yaml.safe_load(file)
160
+
161
+ core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
162
+
163
+ extras = core.setup_extras_pre()
164
+ models = core.setup_models(extras)
165
+ models.generator.eval().requires_grad_(False)
166
+ print("STAGE C READY")
167
+
168
+ extras_b = core_b.setup_extras_pre()
169
+ models_b = core_b.setup_models(extras_b, skip_clip=True)
170
+ models_b = WurstCoreB.Models(
171
+ **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
172
+ )
173
+ models_b.generator.bfloat16().eval().requires_grad_(False)
174
+ print("STAGE B READY")
175
+
176
+ pretrained_path = args.pretrained_path
177
+ sdd = torch.load(pretrained_path, map_location='cpu')
178
+ collect_sd = {}
179
+ for k, v in sdd.items():
180
+ collect_sd[k[7:]] = v
181
+
182
+ models.train_norm.load_state_dict(collect_sd)
183
+ models.generator.eval()
184
+ models.train_norm.eval()
185
+
186
+
187
+ demo.launch(
188
+ debug=True, share=True,
189
+ )