webtoon / app-backup.py
openfree's picture
Create app-backup.py
fdd2211 verified
raw
history blame
13.5 kB
import os
import gc
import uuid
import random
import tempfile
import time
from datetime import datetime
from typing import Any
from huggingface_hub import login, hf_hub_download
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from diffusers import FluxPipeline
from transformers import pipeline
# 메모리 정리 함수
def clear_memory():
gc.collect()
try:
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
except:
pass
# GPU 설정
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# HF 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=-1) # CPU에서 실행
def translate_to_english(text: str) -> str:
"""한글 텍스트를 영어로 번역"""
try:
if any(ord('가') <= ord(char) <= ord('힣') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
# FLUX 파이프라인 초기화 부분 수정
print("Initializing FLUX pipeline...")
try:
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
print("FLUX pipeline initialized successfully")
# 메모리 최적화 설정
pipe.enable_attention_slicing(slice_size=1)
# GPU 설정
if torch.cuda.is_available():
pipe = pipe.to("cuda:0")
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
print("Pipeline optimization settings applied")
except Exception as e:
print(f"Error initializing FLUX pipeline: {str(e)}")
raise
# LoRA 가중치 로드 부분 수정
print("Loading LoRA weights...")
try:
# 로컬 LoRA 파일의 절대 경로 확인
current_dir = os.path.dirname(os.path.abspath(__file__))
lora_path = os.path.join(current_dir, "myt-flux-fantasy.safetensors")
if not os.path.exists(lora_path):
raise FileNotFoundError(f"LoRA file not found at: {lora_path}")
print(f"Loading LoRA weights from: {lora_path}")
# LoRA 가중치 로드
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.75) # lora_scale 값 조정
# 메모리 정리
torch.cuda.empty_cache()
gc.collect()
print("LoRA weights loaded and fused successfully")
print(f"Current device: {pipe.device}")
except Exception as e:
print(f"Error loading LoRA weights: {str(e)}")
print(f"Full error details: {repr(e)}")
raise ValueError(f"Failed to load LoRA weights: {str(e)}")
@spaces.GPU(duration=60)
def generate_image(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
progress: gr.Progress = gr.Progress()
):
try:
clear_memory()
translated_prompt = translate_to_english(prompt)
print(f"Processing prompt: {translated_prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Current device: {pipe.device}")
print(f"Starting image generation...")
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
image = pipe(
prompt=translated_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
num_images_per_prompt=1,
).images[0]
filepath = save_generated_image(image, translated_prompt)
print(f"Image generated and saved to: {filepath}")
return image, seed
except Exception as e:
print(f"Generation error: {str(e)}")
print(f"Full error details: {repr(e)}")
raise gr.Error(f"Image generation failed: {str(e)}")
finally:
clear_memory()
# 저장 디렉토리 설정
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
return filepath
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
"""텍스트에 외곽선을 추가하는 함수"""
for adj_x in range(-stroke_width, stroke_width + 1):
for adj_y in range(-stroke_width, stroke_width + 1):
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
def add_text_to_image(
input_image,
text,
font_size,
color,
opacity,
x_position,
y_position,
thickness,
text_position_type,
font_choice
):
try:
if input_image is None or text.strip() == "":
return input_image
if not isinstance(input_image, Image.Image):
if isinstance(input_image, np.ndarray):
image = Image.fromarray(input_image)
else:
raise ValueError("Unsupported image type")
else:
image = input_image.copy()
if image.mode != 'RGBA':
image = image.convert('RGBA')
font_files = {
"Default": "DejaVuSans.ttf",
"Korean Regular": "ko-Regular.ttf"
}
try:
font_file = font_files.get(font_choice, "DejaVuSans.ttf")
font = ImageFont.truetype(font_file, int(font_size))
except Exception as e:
print(f"Font loading error ({font_choice}): {str(e)}")
font = ImageFont.load_default()
color_map = {
'White': (255, 255, 255),
'Black': (0, 0, 0),
'Red': (255, 0, 0),
'Green': (0, 255, 0),
'Blue': (0, 0, 255),
'Yellow': (255, 255, 0),
'Purple': (128, 0, 128)
}
rgb_color = color_map.get(color, (255, 255, 255))
temp_draw = ImageDraw.Draw(image)
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
actual_x = int((image.width - text_width) * (x_position / 100))
actual_y = int((image.height - text_height) * (y_position / 100))
text_color = (*rgb_color, int(opacity))
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_overlay)
add_text_with_stroke(
draw,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
output_image = Image.alpha_composite(image, txt_overlay)
output_image = output_image.convert('RGB')
return output_image
except Exception as e:
print(f"Error in add_text_to_image: {str(e)}")
return input_image
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 1em 0;
padding: 1.5em;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.main-title h1 {
color: #2196F3;
font-size: 2.8em;
margin-bottom: 0.3em;
font-weight: 700;
}
.main-title p {
color: #555;
font-size: 1.3em;
line-height: 1.4;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.input-panel, .output-panel {
background: white;
padding: 1.5em;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
margin-bottom: 1em;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>🎨 Webtoon Studio</h1>
<p>Generate webtoon-style images and add text with various styles and positions.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# 이미지 생성 섹션
gen_prompt = gr.Textbox(
label="Generation Prompt",
placeholder="Enter your image generation prompt..."
)
with gr.Row():
gen_width = gr.Slider(512, 1024, 768, step=64, label="Width")
gen_height = gr.Slider(512, 1024, 768, step=64, label="Height")
with gr.Row():
guidance_scale = gr.Slider(1, 20, 7.5, step=0.5, label="Guidance Scale")
num_steps = gr.Slider(1, 50, 30, step=1, label="Number of Steps")
with gr.Row():
seed = gr.Number(label="Seed", value=-1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_btn = gr.Button("Generate Image", variant="primary")
output_image = gr.Image(
label="Generated Image",
type="pil",
show_download_button=True
)
output_seed = gr.Number(label="Used Seed", interactive=False)
# 텍스트 추가 섹션
with gr.Accordion("Text Options", open=False):
text_input = gr.Textbox(
label="Text Content",
placeholder="Enter text to add..."
)
text_position_type = gr.Radio(
choices=["Text Over Image"],
value="Text Over Image",
label="Text Position",
visible=True
)
with gr.Row():
font_choice = gr.Dropdown(
choices=["Default", "Korean Regular"],
value="Default",
label="Font Selection",
interactive=True
)
font_size = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=5,
label="Font Size"
)
with gr.Row():
color_dropdown = gr.Dropdown(
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
value="White",
label="Text Color"
)
thickness = gr.Slider(
minimum=0,
maximum=10,
value=1,
step=1,
label="Text Thickness"
)
with gr.Row():
opacity_slider = gr.Slider(
minimum=0,
maximum=255,
value=255,
step=1,
label="Opacity"
)
with gr.Row():
x_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="Left(0%)~Right(100%)"
)
y_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="High(0%)~Low(100%)"
)
add_text_btn = gr.Button("Apply Text", variant="primary")
# 이벤트 바인딩
generate_btn.click(
fn=generate_image,
inputs=[
gen_prompt,
seed,
randomize_seed,
gen_width,
gen_height,
guidance_scale,
num_steps,
],
outputs=[output_image, output_seed]
)
add_text_btn.click(
fn=add_text_to_image,
inputs=[
output_image,
text_input,
font_size,
color_dropdown,
opacity_slider,
x_position,
y_position,
thickness,
text_position_type,
font_choice
],
outputs=output_image
)
demo.queue(max_size=5)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2
)