Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -103,14 +103,8 @@ try:
|
|
103 |
|
104 |
print(f"Loading LoRA weights from: {lora_path}")
|
105 |
|
106 |
-
# LoRA 가중치 로드
|
107 |
-
pipe.load_lora_weights(
|
108 |
-
lora_path,
|
109 |
-
adapter_name="fantasy"
|
110 |
-
)
|
111 |
-
|
112 |
-
# LoRA 가중치 활성화
|
113 |
-
pipe.set_adapters(["fantasy"])
|
114 |
pipe.fuse_lora(lora_scale=0.75) # lora_scale 값 조정
|
115 |
|
116 |
# 메모리 정리
|
@@ -119,7 +113,6 @@ try:
|
|
119 |
|
120 |
print("LoRA weights loaded and fused successfully")
|
121 |
print(f"Current device: {pipe.device}")
|
122 |
-
print(f"Active adapters: {pipe.active_adapters}")
|
123 |
|
124 |
except Exception as e:
|
125 |
print(f"Error loading LoRA weights: {str(e)}")
|
@@ -143,16 +136,14 @@ def generate_image(
|
|
143 |
|
144 |
translated_prompt = translate_to_english(prompt)
|
145 |
print(f"Processing prompt: {translated_prompt}")
|
146 |
-
print(f"Active adapters before generation: {pipe.active_adapters}")
|
147 |
|
148 |
if randomize_seed:
|
149 |
seed = random.randint(0, MAX_SEED)
|
150 |
|
151 |
generator = torch.Generator(device=device).manual_seed(seed)
|
152 |
|
153 |
-
# LoRA 설정 확인
|
154 |
-
print(f"LoRA scale: {pipe.lora_scale}")
|
155 |
print(f"Current device: {pipe.device}")
|
|
|
156 |
|
157 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
|
158 |
image = pipe(
|
|
|
103 |
|
104 |
print(f"Loading LoRA weights from: {lora_path}")
|
105 |
|
106 |
+
# LoRA 가중치 로드
|
107 |
+
pipe.load_lora_weights(lora_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
pipe.fuse_lora(lora_scale=0.75) # lora_scale 값 조정
|
109 |
|
110 |
# 메모리 정리
|
|
|
113 |
|
114 |
print("LoRA weights loaded and fused successfully")
|
115 |
print(f"Current device: {pipe.device}")
|
|
|
116 |
|
117 |
except Exception as e:
|
118 |
print(f"Error loading LoRA weights: {str(e)}")
|
|
|
136 |
|
137 |
translated_prompt = translate_to_english(prompt)
|
138 |
print(f"Processing prompt: {translated_prompt}")
|
|
|
139 |
|
140 |
if randomize_seed:
|
141 |
seed = random.randint(0, MAX_SEED)
|
142 |
|
143 |
generator = torch.Generator(device=device).manual_seed(seed)
|
144 |
|
|
|
|
|
145 |
print(f"Current device: {pipe.device}")
|
146 |
+
print(f"Starting image generation...")
|
147 |
|
148 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
|
149 |
image = pipe(
|