File size: 7,827 Bytes
95ca0ab
 
 
 
 
 
 
 
 
ed43564
 
 
 
 
 
95ca0ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed43564
 
 
 
 
 
 
 
 
 
 
 
95ca0ab
 
 
 
87b577b
ed43564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca0ab
 
 
 
ed43564
 
 
 
 
 
 
 
 
 
 
c42041f
ed43564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e6082
 
 
 
ed43564
95ca0ab
 
 
 
 
ed43564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca0ab
ed43564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca0ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed43564
95ca0ab
 
 
ed43564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ca0ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python
# coding: utf-8

# In[1]:

import numpy as np
import pandas as pd
import regex as re
import streamlit as st
import pickle
import io
import simplejson as json
import base64
import uuid



# In[2]:




def decodeIfc(txt):
    # In regex "\" is hard to manage in Python... I use this workaround
    txt = txt.replace('\\', 'µµµ')
    txt = re.sub('µµµX2µµµ([0-9A-F]{4,})+µµµX0µµµ', decodeIfcX2, txt)
    txt = re.sub('µµµSµµµ(.)', decodeIfcS, txt)
    txt = re.sub('µµµXµµµ([0-9A-F]{2})', decodeIfcX, txt)
    txt = txt.replace('µµµ','\\')
    return txt

def decodeIfcX2(match):
    # X2 encodes characters with multiple of 4 hexadecimal numbers.
    return ''.join(list(map(lambda x : chr(int(x,16)), re.findall('([0-9A-F]{4})',match.group(1)))))

def decodeIfcS(match):
    return chr(ord(match.group(1))+128)

def decodeIfcX(match):
    # Sometimes, IFC files were made with old Mac... wich use MacRoman encoding.
    num = int(match.group(1), 16)
    if (num <= 127) | (num >= 160):
        return chr(num)
    else:
        return bytes.fromhex(match.group(1)).decode("macroman")

def convert_unicode_string(row, column_name):
    return decodeIfc(row[column_name])


def decode_cobie(cobie_df):

    columns_to_decode = ['Name', 'TypeName', 'Description']    
    for column_to_decode in columns_to_decode:
        
        cobie_df[column_to_decode] = cobie_df.apply(
            convert_unicode_string,
            column_name=column_to_decode,
            axis=1
        )

    return cobie_df


# In[3]:

def combine_type_component(cobie_type_df, cobie_component_df):

    cobie_type_df.rename(columns={
        'Name':'TypeName',
        'ExtObject':'TypeExtObject',
        'ExtIdentifier':'TypeExtIdentifier',
    }, inplace=True)

    cobie_type_component = pd.merge(
        cobie_component_df[[
            'Name','TypeName', 'Space',
            'ExtObject', 'ExtIdentifier', 'SerialNumber',
        ]],
        cobie_type_df[[
            'TypeName', 'Category', 'Description',
            'Manufacturer', 'ModelNumber', 
            'TypeExtObject', 'TypeExtIdentifier',
        ]],
        on='TypeName',
        how='left', 
    )

    return cobie_type_component



# In[4]:

def combine_full_component_system(cobie_flat, cobie_system_df):

    cobie_system_df.rename(columns={
        'Name':'SystemName',
        'Description':'SystemDescription',
        'Category':'SystemCategory',
        'ComponentNames':'Name',
    }, inplace=True)
    system_all = cobie_system_df.explode(column='Name')

    cobie_flat = pd.merge(
        cobie_flat,
        system_all[[
            'SystemName', 'SystemDescription', 'SystemCategory',
            'Name', 
        ]],
        on='Name',
        how='left', 
    )

    cobie_flat = cobie_flat[[
        'Name',
        'TypeName', 
        'Description',
        'Category',
        'SystemName',
        'SystemDescription',
        'SystemCategory',
        'Space',
        'ExtObject',
        'ExtIdentifier',
        'SerialNumber',
        'Manufacturer',
        'ModelNumber',
        'TypeExtObject',
        'TypeExtIdentifier',

    ]]

    cobie_flat = cobie_flat.drop_duplicates(
        subset=['ExtIdentifier'],
    )

    return cobie_flat



# In[5]:

def download_button(object_to_download, download_filename, button_text, pickle_it=False):
    """
    Generates a link to download the given object_to_download.
    Params:
    ------
    object_to_download:  The object to be downloaded.
    download_filename (str): filename and extension of file. e.g. mydata.csv,
    some_txt_output.txt download_link_text (str): Text to display for download
    link.
    button_text (str): Text to display on download button (e.g. 'click here to download file')
    pickle_it (bool): If True, pickle file.
    Returns:
    -------
    (str): the anchor tag to download object_to_download
    Examples:
    --------
    download_link(your_df, 'YOUR_DF.csv', 'Click to download data!')
    download_link(your_str, 'YOUR_STRING.txt', 'Click to download text!')
    """
    if pickle_it:
        try:
            object_to_download = pickle.dumps(object_to_download)
        except pickle.PicklingError as e:
            st.write(e)
            return None

    else:
        if isinstance(object_to_download, bytes):
            pass

        elif isinstance(object_to_download, pd.DataFrame):
            #object_to_download = object_to_download.to_csv(index=False)
            towrite = io.BytesIO()
            object_to_download = object_to_download.to_excel(
                towrite,
                encoding='utf-8',
                index=False,
                header=True,
                na_rep=''
            )
            towrite.seek(0)

        # Try JSON encode for everything else
        else:
            object_to_download = json.dumps(object_to_download)

    try:
        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

    except AttributeError as e:
        b64 = base64.b64encode(towrite.read()).decode()

    button_uuid = str(uuid.uuid4()).replace('-', '')
    button_id = re.sub('\d+', '', button_uuid)

    custom_css = f""" 
        <style>
            #{button_id} {{
                display: inline-flex;
                align-items: center;
                justify-content: center;
                background-color: rgb(255, 255, 255);
                color: rgb(38, 39, 48);
                padding: .25rem .75rem;
                position: relative;
                text-decoration: none;
                border-radius: 4px;
                border-width: 1px;
                border-style: solid;
                border-color: rgb(230, 234, 241);
                border-image: initial;
            }} 
            #{button_id}:hover {{
                border-color: rgb(246, 51, 102);
                color: rgb(246, 51, 102);
            }}
            #{button_id}:active {{
                box-shadow: none;
                background-color: rgb(246, 51, 102);
                color: white;
                }}
        </style> """

    dl_link = custom_css + f'<a download="{download_filename}" id="{button_id}" href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}">{button_text}</a><br></br>'

    return dl_link

# In[7]:



# In[8]:



# In[9]:


# In[10]:



# In[11]:



# In[12]:



# In[13]:



# In[ ]:

cobie_file_button = st.text_input("Dropbox link to COBie file", key="cobie_file_button")

# In[ ]:

if cobie_file_button:

    cobie_file_path = st.session_state.cobie_file_button

    if '=0' in cobie_file_path:

        cobie_file_path = cobie_file_path.replace('=0', '=1')

    cobie_file = pd.ExcelFile(cobie_file_path)
    cobie_floor_df = cobie_file.parse(sheet_name = 'Floor', dtype={'ExtIdentifier':str, 'Name':str})
    cobie_space_df = cobie_file.parse(sheet_name = 'Space', dtype={'ExtIdentifier':str, 'Name':str})
    cobie_type_df = cobie_file.parse(sheet_name = 'Type', dtype={'ExtIdentifier':str, 'Description':str, 'Name':str})
    cobie_system_df = cobie_file.parse(sheet_name = 'System', dtype={'ExtIdentifier':str, 'Description':str, 'Name':str})
    cobie_component_df = cobie_file.parse(sheet_name = 'Component', dtype={'ExtIdentifier':str, 'Space':str, 'Description':str, 'Name':str})

    
    cobie_type_component = combine_type_component(cobie_type_df, cobie_component_df)
    cobie_flat = combine_full_component_system(cobie_type_component, cobie_system_df)
    cobie_flat = decode_cobie(cobie_flat)

    file_name = 'cobie_flat.xlsx'
    download_button_str = download_button(cobie_flat, file_name, f'Click here to download {file_name}', pickle_it=False)
    st.markdown(download_button_str, unsafe_allow_html=True)