Spaces:
Paused
Paused
Upload 5 files
Browse files- README.md +5 -9
- app.py +377 -0
- app_legacy.py +128 -0
- requirements.txt +4 -0
- votes.json +0 -0
README.md
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
---
|
2 |
-
title: UGround
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
short_description: GUI visual grounding model
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: UGround-Qwen2-VL
|
3 |
+
emoji: π»
|
4 |
+
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.6.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
---
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
from datetime import datetime
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import spaces
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
from qwen_vl_utils import process_vision_info
|
9 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
10 |
+
import ast
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
14 |
+
|
15 |
+
# Define constants
|
16 |
+
DESCRIPTION = "[UGround Demo](https://osu-nlp-group.github.io/UGround/)"
|
17 |
+
_SYSTEM = "You are a very helpful assistant."
|
18 |
+
MIN_PIXELS = 256 * 28 * 28
|
19 |
+
MAX_PIXELS = 1344 * 1344
|
20 |
+
|
21 |
+
# Specify the model repository and destination folder
|
22 |
+
# https://huggingface.co/osunlp/UGround-V1-2B
|
23 |
+
model_repo = "osunlp/UGround-V1-2B"
|
24 |
+
destination_folder = "./UGround-V1-2B"
|
25 |
+
|
26 |
+
# Ensure the destination folder exists
|
27 |
+
os.makedirs(destination_folder, exist_ok=True)
|
28 |
+
|
29 |
+
# List all files in the repository
|
30 |
+
files = list_repo_files(repo_id=model_repo)
|
31 |
+
|
32 |
+
# Download each file to the destination folder
|
33 |
+
for file in files:
|
34 |
+
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
|
35 |
+
print(f"Downloaded {file} to {file_path}")
|
36 |
+
|
37 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
38 |
+
destination_folder,
|
39 |
+
torch_dtype=torch.bfloat16,
|
40 |
+
device_map="cpu",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load the processor
|
44 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
|
45 |
+
|
46 |
+
# Helper functions
|
47 |
+
def draw_point(image_input, point=None, radius=5):
|
48 |
+
"""Draw a point on the image."""
|
49 |
+
if isinstance(image_input, str):
|
50 |
+
image = Image.open(image_input)
|
51 |
+
else:
|
52 |
+
image = Image.fromarray(np.uint8(image_input))
|
53 |
+
|
54 |
+
if point:
|
55 |
+
x, y = round(point[0]/1000 * image.width), round(point[1]/1000 * image.height)
|
56 |
+
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
|
57 |
+
return image
|
58 |
+
|
59 |
+
def array_to_image_path(image_array, session_id):
|
60 |
+
"""Save the uploaded image and return its path."""
|
61 |
+
if image_array is None:
|
62 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
63 |
+
img = Image.fromarray(np.uint8(image_array))
|
64 |
+
filename = f"{session_id}.png"
|
65 |
+
img.save(filename)
|
66 |
+
return os.path.abspath(filename)
|
67 |
+
|
68 |
+
def crop_image(image_path, click_xy, crop_factor=0.5):
|
69 |
+
"""Crop the image around the click point."""
|
70 |
+
image = Image.open(image_path)
|
71 |
+
width, height = image.size
|
72 |
+
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)
|
73 |
+
|
74 |
+
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
|
75 |
+
left = max(center_x - crop_width // 2, 0)
|
76 |
+
upper = max(center_y - crop_height // 2, 0)
|
77 |
+
right = min(center_x + crop_width // 2, width)
|
78 |
+
lower = min(center_y + crop_height // 2, height)
|
79 |
+
|
80 |
+
cropped_image = image.crop((left, upper, right, lower))
|
81 |
+
cropped_image_path = f"cropped_{os.path.basename(image_path)}"
|
82 |
+
cropped_image.save(cropped_image_path)
|
83 |
+
|
84 |
+
return cropped_image_path
|
85 |
+
|
86 |
+
@spaces.GPU
|
87 |
+
def run_showui(image, query, session_id, iterations=1):
|
88 |
+
"""Main function for iterative inference."""
|
89 |
+
image_path = array_to_image_path(image, session_id)
|
90 |
+
|
91 |
+
click_xy = None
|
92 |
+
images_during_iterations = [] # List to store images at each step
|
93 |
+
|
94 |
+
for _ in range(iterations):
|
95 |
+
messages = [
|
96 |
+
{
|
97 |
+
"role": "user",
|
98 |
+
"content": [
|
99 |
+
{"type": "text", "text": "You are a very helpful assistant"},
|
100 |
+
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
|
101 |
+
{"type": "text", "text": f"""Your task is to help the user identify the precise coordinates (x, y) of a specific area/element/object on the screen based on a description.
|
102 |
+
|
103 |
+
- Your response should aim to point to the center or a representative point within the described area/element/object as accurately as possible.
|
104 |
+
- If the description is unclear or ambiguous, infer the most relevant area or element based on its likely context or purpose.
|
105 |
+
- Your answer should be a single string (x, y) corresponding to the point of the interest.
|
106 |
+
|
107 |
+
Description: {query}
|
108 |
+
|
109 |
+
Answer:"""}
|
110 |
+
],
|
111 |
+
}
|
112 |
+
]
|
113 |
+
|
114 |
+
global model
|
115 |
+
model = model.to("cuda")
|
116 |
+
|
117 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
118 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
119 |
+
inputs = processor(
|
120 |
+
text=[text],
|
121 |
+
images=image_inputs,
|
122 |
+
videos=video_inputs,
|
123 |
+
padding=True,
|
124 |
+
return_tensors="pt"
|
125 |
+
)
|
126 |
+
inputs = inputs.to("cuda")
|
127 |
+
|
128 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128,temperature=0)
|
129 |
+
generated_ids_trimmed = [
|
130 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
131 |
+
]
|
132 |
+
output_text = processor.batch_decode(
|
133 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
134 |
+
)[0]
|
135 |
+
|
136 |
+
click_xy = ast.literal_eval(output_text)
|
137 |
+
|
138 |
+
# Draw point on the current image
|
139 |
+
result_image = draw_point(image_path, click_xy, radius=10)
|
140 |
+
images_during_iterations.append(result_image) # Store the current image
|
141 |
+
|
142 |
+
# Crop the image for the next iteration
|
143 |
+
image_path = crop_image(image_path, click_xy)
|
144 |
+
|
145 |
+
return images_during_iterations, str(click_xy)
|
146 |
+
|
147 |
+
def save_and_upload_data(image, query, session_id, is_example_image, votes=None):
|
148 |
+
"""Save the data to a JSON file and upload to S3."""
|
149 |
+
if is_example_image == "True":
|
150 |
+
return
|
151 |
+
|
152 |
+
votes = votes or {"upvotes": 0, "downvotes": 0}
|
153 |
+
|
154 |
+
# Save image locally
|
155 |
+
image_file_name = f"{session_id}.png"
|
156 |
+
image.save(image_file_name)
|
157 |
+
|
158 |
+
data = {
|
159 |
+
"image_path": image_file_name,
|
160 |
+
"query": query,
|
161 |
+
"votes": votes,
|
162 |
+
"timestamp": datetime.now().isoformat()
|
163 |
+
}
|
164 |
+
|
165 |
+
local_file_name = f"{session_id}.json"
|
166 |
+
|
167 |
+
with open(local_file_name, "w") as f:
|
168 |
+
json.dump(data, f)
|
169 |
+
|
170 |
+
return data
|
171 |
+
|
172 |
+
def update_vote(vote_type, session_id, is_example_image):
|
173 |
+
"""Update the vote count and re-upload the JSON file."""
|
174 |
+
if is_example_image == "True":
|
175 |
+
return "Example image."
|
176 |
+
|
177 |
+
local_file_name = f"{session_id}.json"
|
178 |
+
|
179 |
+
with open(local_file_name, "r") as f:
|
180 |
+
data = json.load(f)
|
181 |
+
|
182 |
+
if vote_type == "upvote":
|
183 |
+
data["votes"]["upvotes"] += 1
|
184 |
+
elif vote_type == "downvote":
|
185 |
+
data["votes"]["downvotes"] += 1
|
186 |
+
|
187 |
+
with open(local_file_name, "w") as f:
|
188 |
+
json.dump(data, f)
|
189 |
+
|
190 |
+
return f"Thank you for your {vote_type}!"
|
191 |
+
|
192 |
+
with open("./assets/showui.png", "rb") as image_file:
|
193 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
194 |
+
|
195 |
+
|
196 |
+
# [
|
197 |
+
# [f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"],
|
198 |
+
# [f"{cur_dir}/shopping.jpg", f"delete button for the second item in the cart list"],
|
199 |
+
# [f"{cur_dir}/ios.jpg", f"Open Maps"],
|
200 |
+
# [f"{cur_dir}/toggle.jpg", f"toggle button labeled by VPN"],
|
201 |
+
# [f"{cur_dir}/semantic.jpg", f"Home"],
|
202 |
+
# [f"{cur_dir}/accweather.jpg", f"Select May"],
|
203 |
+
# [f"{cur_dir}/arxiv.jpg", f"Home"],
|
204 |
+
# [f"{cur_dir}/arxiv.jpg", f"Edit the page"],
|
205 |
+
# [f"{cur_dir}/ios.jpg", f"icon at the top right corner"],
|
206 |
+
# [f"{cur_dir}/health.jpg", f"text labeled by 2023/11/26"],
|
207 |
+
|
208 |
+
|
209 |
+
examples = [
|
210 |
+
["./examples/amazon.jpg", "Search bar at the top of the page", True],
|
211 |
+
["./examples/shopping.jpg", "delete button for the second item in the cart list", True],
|
212 |
+
["./examples/ios.jpg", "Open Maps", True],
|
213 |
+
["./examples/toggle.jpg", "toggle button labeled by VPN", True],
|
214 |
+
["./examples/semantic.jpg", "Home", True],
|
215 |
+
["./examples/accweather.jpg", "Select May", True],
|
216 |
+
["./examples/arxiv.jpg", "Home", True],
|
217 |
+
["./examples/arxiv.jpg", "Edit the page", True],
|
218 |
+
["./examples/ios.jpg", "icon at the top right corner", True],
|
219 |
+
["./examples/health.jpg", "text labeled by 2023/11/26", True],
|
220 |
+
["./examples/app_store.png", "Download Kindle.", True],
|
221 |
+
["./examples/ios_setting.png", "Turn off Do not disturb.", True],
|
222 |
+
# ["./examples/apple_music.png", "Star to favorite.", True],
|
223 |
+
# ["./examples/map.png", "Boston.", True],
|
224 |
+
# ["./examples/wallet.png", "Scan a QR code.", True],
|
225 |
+
# ["./examples/word.png", "More shapes.", True],
|
226 |
+
# ["./examples/web_shopping.png", "Proceed to checkout.", True],
|
227 |
+
# ["./examples/web_forum.png", "Post my comment.", True],
|
228 |
+
# ["./examples/safari_google.png", "Click on search bar.", True],
|
229 |
+
]
|
230 |
+
|
231 |
+
def build_demo(embed_mode, concurrency_count=1):
|
232 |
+
with gr.Blocks(title="UGround Demo", theme=gr.themes.Default()) as demo:
|
233 |
+
state_image_path = gr.State(value=None)
|
234 |
+
state_session_id = gr.State(value=None)
|
235 |
+
|
236 |
+
# if not embed_mode:
|
237 |
+
# gr.HTML(
|
238 |
+
# f"""
|
239 |
+
# <div style="text-align: center; margin-bottom: 20px;">
|
240 |
+
# <div style="display: flex; justify-content: center;">
|
241 |
+
# <img src="https://raw.githubusercontent.com/showlab/ShowUI/refs/heads/main/assets/showui.jpg" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
|
242 |
+
# </div>
|
243 |
+
# <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
|
244 |
+
# <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
|
245 |
+
# <a href="https://huggingface.co/showlab/ShowUI-2B" target="_blank">
|
246 |
+
# <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
|
247 |
+
# </a>
|
248 |
+
# <a href="https://arxiv.org/abs/2411.17465" target="_blank">
|
249 |
+
# <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
|
250 |
+
# </a>
|
251 |
+
# <a href="https://github.com/showlab/ShowUI" target="_blank">
|
252 |
+
# <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
|
253 |
+
# </a>
|
254 |
+
# </div>
|
255 |
+
# </div>
|
256 |
+
# """
|
257 |
+
# )
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column(scale=3):
|
261 |
+
imagebox = gr.Image(type="numpy", label="Input Screenshot", placeholder="""#Try UGround with screenshots!
|
262 |
+
|
263 |
+
|
264 |
+
Windows: [Win + Shift + S]
|
265 |
+
macOS: [Command + Shift + 3]
|
266 |
+
|
267 |
+
Then upload/paste from clipboard π€
|
268 |
+
""")
|
269 |
+
|
270 |
+
# Add a slider for iteration count
|
271 |
+
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")
|
272 |
+
|
273 |
+
textbox = gr.Textbox(
|
274 |
+
show_label=True,
|
275 |
+
placeholder="Enter a query (e.g., 'Click Nahant')",
|
276 |
+
label="Query",
|
277 |
+
)
|
278 |
+
submit_btn = gr.Button(value="Submit", variant="primary")
|
279 |
+
|
280 |
+
# Examples component
|
281 |
+
gr.Examples(
|
282 |
+
examples=[[e[0], e[1]] for e in examples],
|
283 |
+
inputs=[imagebox, textbox],
|
284 |
+
outputs=[textbox], # Only update the query textbox
|
285 |
+
examples_per_page=3,
|
286 |
+
)
|
287 |
+
|
288 |
+
# Add a hidden dropdown to pass the `is_example` flag
|
289 |
+
is_example_dropdown = gr.Dropdown(
|
290 |
+
choices=["True", "False"],
|
291 |
+
value="False",
|
292 |
+
visible=False,
|
293 |
+
label="Is Example Image",
|
294 |
+
)
|
295 |
+
|
296 |
+
def set_is_example(query):
|
297 |
+
# Find the example and return its `is_example` flag
|
298 |
+
for _, example_query, is_example in examples:
|
299 |
+
if query.strip() == example_query.strip():
|
300 |
+
return str(is_example) # Return as string for Dropdown compatibility
|
301 |
+
return "False"
|
302 |
+
|
303 |
+
textbox.change(
|
304 |
+
set_is_example,
|
305 |
+
inputs=[textbox],
|
306 |
+
outputs=[is_example_dropdown],
|
307 |
+
)
|
308 |
+
|
309 |
+
with gr.Column(scale=8):
|
310 |
+
output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain", preview=True)
|
311 |
+
# output_gallery = gr.Gallery(label="Iterative Refinement")
|
312 |
+
gr.HTML(
|
313 |
+
"""
|
314 |
+
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
|
315 |
+
"""
|
316 |
+
)
|
317 |
+
output_coords = gr.Textbox(label="Final Clickable Coordinates")
|
318 |
+
|
319 |
+
gr.HTML(
|
320 |
+
"""
|
321 |
+
<p><strong>π€ Good or bad? Rate your experience to help us improve! β¬οΈ</strong></p>
|
322 |
+
"""
|
323 |
+
)
|
324 |
+
with gr.Row(elem_id="action-buttons", equal_height=True):
|
325 |
+
upvote_btn = gr.Button(value="π Looks good!", variant="secondary")
|
326 |
+
downvote_btn = gr.Button(value="π Too bad!", variant="secondary")
|
327 |
+
clear_btn = gr.Button(value="ποΈ Clear", interactive=True)
|
328 |
+
|
329 |
+
def on_submit(image, query, iterations, is_example_image):
|
330 |
+
if image is None:
|
331 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
332 |
+
|
333 |
+
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
334 |
+
|
335 |
+
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
|
336 |
+
|
337 |
+
save_and_upload_data(images_during_iterations[0], query, session_id, is_example_image)
|
338 |
+
|
339 |
+
return images_during_iterations, click_coords, session_id
|
340 |
+
|
341 |
+
submit_btn.click(
|
342 |
+
on_submit,
|
343 |
+
[imagebox, textbox, iteration_slider, is_example_dropdown],
|
344 |
+
[output_gallery, output_coords, state_session_id],
|
345 |
+
)
|
346 |
+
|
347 |
+
clear_btn.click(
|
348 |
+
lambda: (None, None, None, None),
|
349 |
+
inputs=None,
|
350 |
+
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
|
351 |
+
queue=False
|
352 |
+
)
|
353 |
+
|
354 |
+
upvote_btn.click(
|
355 |
+
lambda session_id, is_example_image: update_vote("upvote", session_id, is_example_image),
|
356 |
+
inputs=[state_session_id, is_example_dropdown],
|
357 |
+
outputs=[],
|
358 |
+
queue=False
|
359 |
+
)
|
360 |
+
|
361 |
+
downvote_btn.click(
|
362 |
+
lambda session_id, is_example_image: update_vote("downvote", session_id, is_example_image),
|
363 |
+
inputs=[state_session_id, is_example_dropdown],
|
364 |
+
outputs=[],
|
365 |
+
queue=False
|
366 |
+
)
|
367 |
+
|
368 |
+
return demo
|
369 |
+
|
370 |
+
if __name__ == "__main__":
|
371 |
+
demo = build_demo(embed_mode=False)
|
372 |
+
demo.queue(api_open=False).launch(
|
373 |
+
server_name="0.0.0.0",
|
374 |
+
server_port=7860,
|
375 |
+
ssr_mode=False,
|
376 |
+
debug=True,
|
377 |
+
)
|
app_legacy.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
from qwen_vl_utils import process_vision_info
|
6 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
7 |
+
import ast
|
8 |
+
import os
|
9 |
+
from datetime import datetime
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
# Function to draw a point on the image
|
13 |
+
def draw_point(image_input, point=None, radius=5):
|
14 |
+
if isinstance(image_input, str):
|
15 |
+
image = Image.open(image_input)
|
16 |
+
else:
|
17 |
+
image = Image.fromarray(np.uint8(image_input))
|
18 |
+
|
19 |
+
if point:
|
20 |
+
x, y = point[0] * image.width, point[1] * image.height
|
21 |
+
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
|
22 |
+
return image
|
23 |
+
|
24 |
+
# Function to save the uploaded image and return its path
|
25 |
+
def array_to_image_path(image_array):
|
26 |
+
if image_array is None:
|
27 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
28 |
+
img = Image.fromarray(np.uint8(image_array))
|
29 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
30 |
+
filename = f"image_{timestamp}.png"
|
31 |
+
img.save(filename)
|
32 |
+
return os.path.abspath(filename)
|
33 |
+
|
34 |
+
# Load the model
|
35 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
36 |
+
# "./showui-2b",
|
37 |
+
"/users/difei/siyuan/showui_demo/showui-2b",
|
38 |
+
torch_dtype=torch.bfloat16,
|
39 |
+
device_map="auto",
|
40 |
+
# verbose=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
# Define minimum and maximum pixel thresholds
|
44 |
+
min_pixels = 256 * 28 * 28
|
45 |
+
max_pixels = 1344 * 28 * 28
|
46 |
+
|
47 |
+
# Load the processor
|
48 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
49 |
+
|
50 |
+
# Hugging Face Space description
|
51 |
+
DESCRIPTION = "[ShowUI-2B Demo](https://huggingface.co/showlab/ShowUI-2B)"
|
52 |
+
|
53 |
+
# Define the system instruction
|
54 |
+
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
|
55 |
+
|
56 |
+
# Define the main function for inference
|
57 |
+
def run_showui(image, query):
|
58 |
+
image_path = array_to_image_path(image)
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": [
|
64 |
+
{"type": "text", "text": _SYSTEM},
|
65 |
+
{"type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels},
|
66 |
+
{"type": "text", "text": query}
|
67 |
+
],
|
68 |
+
}
|
69 |
+
]
|
70 |
+
|
71 |
+
# Prepare inputs for the model
|
72 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
73 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
74 |
+
inputs = processor(
|
75 |
+
text=[text],
|
76 |
+
images=image_inputs,
|
77 |
+
videos=video_inputs,
|
78 |
+
padding=True,
|
79 |
+
return_tensors="pt"
|
80 |
+
)
|
81 |
+
inputs = inputs.to("cuda")
|
82 |
+
|
83 |
+
# Generate output
|
84 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
85 |
+
generated_ids_trimmed = [
|
86 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
87 |
+
]
|
88 |
+
output_text = processor.batch_decode(
|
89 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
90 |
+
)[0]
|
91 |
+
|
92 |
+
# Parse the output into coordinates
|
93 |
+
click_xy = ast.literal_eval(output_text)
|
94 |
+
|
95 |
+
# Draw the point on the image
|
96 |
+
result_image = draw_point(image_path, click_xy, radius=10)
|
97 |
+
return result_image, str(click_xy)
|
98 |
+
|
99 |
+
with open("./assets/showui.png", "rb") as image_file:
|
100 |
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
101 |
+
|
102 |
+
# Gradio UI
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
gr.HTML(
|
105 |
+
f"""
|
106 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
107 |
+
<a href="https://github.com/showlab/ShowUI" target="_blank">
|
108 |
+
<img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: 200px; height: auto;"/>
|
109 |
+
</a>
|
110 |
+
</div>
|
111 |
+
"""
|
112 |
+
)
|
113 |
+
|
114 |
+
gr.Markdown(DESCRIPTION)
|
115 |
+
with gr.Tab(label="ShowUI-2B Input"):
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
input_img = gr.Image(label="Input Screenshot")
|
119 |
+
text_input = gr.Textbox(label="Query (e.g., 'Click Nahant')")
|
120 |
+
submit_btn = gr.Button(value="Submit")
|
121 |
+
with gr.Column():
|
122 |
+
output_img = gr.Image(label="Output Image")
|
123 |
+
output_coords = gr.Textbox(label="Clickable Coordinates")
|
124 |
+
|
125 |
+
submit_btn.click(run_showui, [input_img, text_input], [output_img, output_coords])
|
126 |
+
|
127 |
+
demo.queue(api_open=False)
|
128 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
qwen-vl-utils==0.0.8
|
2 |
+
torchvision
|
3 |
+
transformers
|
4 |
+
accelerate
|
votes.json
ADDED
File without changes
|