File size: 5,231 Bytes
cc0e894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02366db
cc0e894
 
 
 
 
02366db
 
 
cc0e894
 
02366db
cc0e894
 
 
 
 
02366db
 
cc0e894
 
 
 
02366db
cc0e894
02366db
cc0e894
 
 
 
 
 
02366db
cc0e894
 
 
 
02366db
cc0e894
 
 
 
 
 
 
02366db
 
 
 
 
cc0e894
 
02366db
 
 
 
 
 
 
 
 
 
 
 
 
 
cc0e894
02366db
cc0e894
 
02366db
cc0e894
 
 
 
02366db
cc0e894
 
02366db
cc0e894
 
 
02366db
cc0e894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02366db
cc0e894
 
 
02366db
 
cc0e894
02366db
cc0e894
 
 
 
 
 
02366db
 
 
 
 
 
 
cc0e894
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import torch
import os
import spaces
import uuid

from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image

# Constants
bases = {
    "Cartoon": "frankjoshua/toonyou_beta6",
    "Realistic": "emilianJR/epiCRealism", 
    "3d": "Lykon/DreamShaper",
    "Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None

# Ensure GPU availability
if not torch.cuda.is_available():
    raise NotImplementedError("No GPU detected!")

device = "cuda"
dtype = torch.float16

# Load initial pipeline
print("Loading AnimateDiff pipeline...")
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
print("Pipeline loaded successfully.")

# Safety checkers
from transformers import CLIPFeatureExtractor
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")

# Video Generation Function
@spaces.GPU(duration=30, queue=False)
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
    global step_loaded
    global base_loaded
    global motion_loaded
    print(f"Generating video for: Prompt='{prompt}', Base='{base}', Motion='{motion}', Steps='{step}'")

    # Load step-specific model
    if step_loaded != step:
        repo = "ByteDance/AnimateDiff-Lightning"
        ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
        pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
        step_loaded = step

    # Load base model
    if base_loaded != base:
        pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
        base_loaded = base

    # Load motion adapter
    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        motion_loaded = motion

    # Video parameters: 30-second duration
    fps = 10
    duration = 30  # seconds
    total_frames = fps * duration  # 300 frames for 30s at 10 FPS

    progress((0, step))

    def progress_callback(i, t, z):
        progress((i + 1, step))

    # Generate video frames
    output_frames = []
    for frame in range(total_frames):
        output = pipe(
            prompt=prompt,
            guidance_scale=1.2,
            num_inference_steps=step,
            callback=progress_callback,
            callback_steps=1
        )
        output_frames.extend(output.frames[0])  # Collect frames

    # Export to video
    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    export_to_video(output_frames, path, fps=fps)
    return path

# Gradio Interface
with gr.Blocks(css="style.css") as demo:
    gr.HTML("<h1><center>Textual Imagination: A Text To Video Synthesis</center></h1>")
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label='Prompt', placeholder="Enter your video description here...")
        with gr.Row():
            select_base = gr.Dropdown(
                label='Base model',
                choices=["Cartoon", "Realistic", "3d", "Anime"],
                value=base_loaded,
                interactive=True
            )
            select_motion = gr.Dropdown(
                label='Motion',
                choices=[
                    ("Default", ""),
                    ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                    ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                    ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                    ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                    ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                    ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                    ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                    ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                ],
                value="guoyww/animatediff-motion-lora-zoom-in",
                interactive=True
            )
            select_step = gr.Dropdown(
                label='Inference steps',
                choices=[('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8)],
                value=4,
                interactive=True
            )
            submit = gr.Button(scale=1, variant='primary')

    video = gr.Video(
        label='Generated Video',
        autoplay=True,
        height=512,
        width=512,
        elem_id="video_output"
    )

    gr.on(
        triggers=[submit.click, prompt.submit],
        fn=generate_image,
        inputs=[prompt, select_base, select_motion, select_step],
        outputs=[video],
        api_name="instant_video",
        queue=False
    )

demo.queue().launch()