File size: 7,635 Bytes
9c06515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f19f6
9c06515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests

import torch
import detectron2
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode

damage_model_path = 'damage/model_final.pth'
scratch_model_path = 'scratch/model_final.pth'
parts_model_path = 'parts/model_final.pth'

if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'

cfg_scratches = get_cfg()
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
cfg_scratches.MODEL.DEVICE = device

predictor_scratches = DefaultPredictor(cfg_scratches)

metadata_scratch = MetadataCatalog.get("car_dataset_val")
metadata_scratch.thing_classes = ["scratch"]

cfg_damage = get_cfg()
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg_damage.MODEL.WEIGHTS = damage_model_path
cfg_damage.MODEL.DEVICE = device

predictor_damage = DefaultPredictor(cfg_damage)

metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
metadata_damage.thing_classes = ["damage"]

cfg_parts = get_cfg()
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
cfg_parts.MODEL.WEIGHTS = parts_model_path
cfg_parts.MODEL.DEVICE = device

predictor_parts = DefaultPredictor(cfg_parts)

metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
metadata_parts.thing_classes = ['_background_',
 'back_bumper',
 'back_glass',
 'back_left_door',
 'back_left_light',
 'back_right_door',
 'back_right_light',
 'front_bumper',
 'front_glass',
 'front_left_door',
 'front_left_light',
 'front_right_door',
 'front_right_light',
 'hood',
 'left_mirror',
 'right_mirror',
 'tailgate',
 'trunk',
 'wheel']

def merge_segment(pred_segm):
    merge_dict = {}
    for i in range(len(pred_segm)):
        merge_dict[i] = []
        for j in range(i+1,len(pred_segm)):
            if torch.sum(pred_segm[i]*pred_segm[j])>0:
                merge_dict[i].append(j)
    
    to_delete = []
    for key in merge_dict:
        for element in merge_dict[key]:
            to_delete.append(element)
    
    for element in to_delete:
        merge_dict.pop(element,None)
        
    empty_delete = []
    for key in merge_dict:
        if merge_dict[key] == []:
            empty_delete.append(key)
    
    for element in empty_delete:
        merge_dict.pop(element,None)
        
    for key in merge_dict:
        for element in merge_dict[key]:
            pred_segm[key]+=pred_segm[element]
            
    except_elem = list(set(to_delete))
    
    new_indexes = list(range(len(pred_segm)))
    for elem in except_elem:
        new_indexes.remove(elem)
        
    return pred_segm[new_indexes]

    
def inference(image):
    img = np.array(image)
    outputs_damage = predictor_damage(img)
    outputs_parts = predictor_parts(img)
    outputs_scratch = predictor_scratches(img)
    out_dict = outputs_damage["instances"].to("cpu").get_fields()
    merged_damage_masks = merge_segment(out_dict['pred_masks'])
    scratch_data = outputs_scratch["instances"].get_fields()
    scratch_masks = scratch_data['pred_masks']
    damage_data = outputs_damage["instances"].get_fields()
    damage_masks = damage_data['pred_masks']
    parts_data = outputs_parts["instances"].get_fields()
    parts_masks = parts_data['pred_masks']
    parts_classes = parts_data['pred_classes']
    new_inst = detectron2.structures.Instances((1024,1024))
    new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
    
    parts_damage_dict = {}
    parts_list_damages = []
    for part in parts_classes:
        parts_damage_dict[metadata_parts.thing_classes[part]] = []
    for mask in scratch_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')              
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
    for mask in merged_damage_masks:
        for i in range(len(parts_masks)):
            if torch.sum(parts_masks[i]*mask)>0:
                parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
                parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
                print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')

    v_d = Visualizer(img[:, :, ::-1],
                   metadata=metadata_damage, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_d = Visualizer(img,scale=1.2)
    #print(outputs["instances"].to('cpu'))
    out_d = v_d.draw_instance_predictions(new_inst)
    img1 = out_d.get_image()[:, :, ::-1]

    v_s = Visualizer(img[:, :, ::-1],
                   metadata=metadata_scratch, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_s = Visualizer(img,scale=1.2)
    out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
    img2 = out_s.get_image()[:, :, ::-1]

    v_p = Visualizer(img[:, :, ::-1],
                   metadata=metadata_parts, 
                   scale=0.5, 
                   instance_mode=ColorMode.SEGMENTATION   # remove the colors of unsegmented pixels. This option is only available for segmentation models
    )
    #v_p = Visualizer(img,scale=1.2)
    out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
    img3 = out_p.get_image()[:, :, ::-1]
    
    return img1, img2, img3, parts_list_damages


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Inputs")
            image = gr.Image(type="pil",label="Input")
            submit_button = gr.Button(value="Submit", label="Submit")
        with gr.Column():
            gr.Markdown("## Outputs")
            with gr.Tab('Image of damages'):
                im1 = gr.Image(type='numpy',label='Image of damages')
            with gr.Tab('Image of scratches'):
                im2 = gr.Image(type='numpy',label='Image of scratches')
            with gr.Tab('Image of parts'):
                im3 = gr.Image(type='numpy',label='Image of car parts')
            with gr.Tab('Information about damaged parts'):
                intersections = gr.Textbox(label='Information about type of damages on each part')
    
    #actions
    submit_button.click(
        fn=inference,
        inputs = [image],
        outputs = [im1,im2,im3,intersections]
    )
        
if __name__ == "__main__":
    demo.launch()