tortoisse-tts / app.py
osanseviero's picture
Update app.py
9c77c78
raw
history blame
4.45 kB
import IPython
import sys
import subprocess
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "--force-reinstall", "git+https://github.com/osanseviero/tortoise-tts.git"])
# entmax could not be installed at same time as torch
subprocess.check_call([sys.executable, "-m", "pip", "install", "entmax"])
from tortoise_tts.api import TextToSpeech
from tortoise_tts.utils.audio import load_audio, get_voices
import torch
import torchaudio
import numpy as np
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
# This will download all the models used by Tortoise from the HF hub
tts = TextToSpeech(device="cuda")
voices = [
"angie",
"daniel",
"deniro",
"emma",
"freeman",
"geralt",
"halle",
"jlaw",
"lj",
"snakes",
"William",
]
voice_paths = get_voices()
print(voice_paths)
preset = "fast"
def inference(text, voice):
text = text[:256]
cond_paths = voice_paths[voice]
conds = []
print(voice_paths, voice, cond_paths)
for cond_path in cond_paths:
c = load_audio(cond_path, 22050)
conds.append(c)
print(text, conds, preset)
gen = tts.tts_with_preset(text, conds, preset)
print("gen")
torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000)
return "generated.wav"
def load_audio_special(sr, data):
if data.dtype == np.int32:
norm_fix = 2 ** 31
elif data.dtype == np.int16:
norm_fix = 2 ** 15
elif data.dtype == np.float16 or data.dtype == np.float32:
norm_fix = 1.
audio = torch.FloatTensor(data.astype(np.float32)) / norm_fix
# Remove any channel data.
if len(audio.shape) > 1:
if audio.shape[0] < 5:
audio = audio[0]
else:
assert audio.shape[1] < 5
audio = audio[:, 0]
if sr != sampling_rate:
audio = torchaudio.functional.resample(audio, sr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 2) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
audio.clip_(-1, 1)
return audio.unsqueeze(0)
def inference_own_voice(text, voice_1, voice_2, voice_3):
text = text[:256]
print(voice_1)
conds = [
load_audio_special(voice_1),
load_audio_special(voice_2),
load_audio_special(voice_3),
]
print(text, conds, preset)
gen = tts.tts_with_preset(text, conds, preset)
print("gen")
torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000)
return "generated.wav"
text = "Joining two modalities results in a surprising increase in generalization! What would happen if we combined them all?"
examples = [
[text, "angie"],
[text, "emma"],
["how are you doing this day", "freeman"]
]
block = gr.Blocks()
with block:
gr.Markdown("# TorToiSe")
gr.Markdown("A multi-voice TTS system trained with an emphasis on quality")
with gr.Tabs():
with gr.TabItem("Pre-recorded voices"):
iface = gr.Interface(
inference,
inputs=[
gr.inputs.Textbox(type="str", default=text, label="Text", lines=3),
gr.inputs.Dropdown(voices),
],
outputs="audio",
examples=examples,
)
with gr.TabItem("Record your voice"):
iface = gr.Interface(
inference_own_voice,
inputs=[
gr.inputs.Textbox(type="str", default=text, label="Text", lines=3),
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 1)", type="numpy"),
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 2)", type="numpy"),
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 3)", type="numpy"),
],
outputs="audio"
)
gr.Markdown("This demo shows the ultra fast option in the TorToiSe system. For more info check the <a href='https://github.com/neonbjb/tortoise-tts' target='_blank'>Repository</a>.",)
block.launch()