FLUX-GIFs-LoRA / app.py
ovi054's picture
Update app.py
3bbbdc0 verified
import os
import io
import random
import requests
import gradio as gr
import numpy as np
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
API_TOKEN = os.getenv("HF_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
def split_image(input_image, num_splits=4):
output_images = []
box_size = 512 # Each split image will be 512x512
coordinates = [
(0, 0, box_size, box_size), # Top-left
(box_size, 0, 1024, box_size), # Top-right
(0, box_size, box_size, 1024), # Bottom-left
(box_size, box_size, 1024, 1024) # Bottom-right
]
# Crop each region using predefined coordinates
for box in coordinates:
output_images.append(input_image.crop(box))
return output_images
# Function to export split images to GIF
def export_to_gif(images, output_path, fps=4):
# Calculate duration per frame in milliseconds based on fps
duration = int(1000 / fps)
# Create a GIF from the list of images
images[0].save(
output_path,
save_all=True,
append_images=images[1:],
duration=duration, # Duration between frames
loop=0 # Loop forever
)
def predict(prompt, seed=-1, randomize_seed=True, guidance_scale=3.5, num_inference_steps=28, lora_id="black-forest-labs/FLUX.1-dev", progress=gr.Progress(track_tqdm=True)):
prompt_template = f"""a 2x2 total 4 grid of frames, showing consecutive stills from a looped gif of {prompt}"""
if lora_id.strip() == "" or lora_id == None:
lora_id = "black-forest-labs/FLUX.1-dev"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
key = random.randint(0, 999)
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
API_TOKEN = random.choice([os.getenv("HF_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
payload = {
"inputs": prompt_template,
"steps": num_inference_steps,
"cfg_scale": guidance_scale,
"seed": seed,
}
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
split_images = split_image(image, num_splits=4)
# Path to save the GIF
gif_path = "output.gif"
# Export the split images to GIF
export_to_gif(split_images, gif_path, fps=4)
return gif_path, image, seed
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
demo = gr.Interface(fn=predict, inputs="text", outputs="image")
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
#stills{max-height:160px}
"""
examples = [
"a cat waving its paws in the air",
"a panda moving their hips from side to side",
"a flower going through the process of blooming"
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX Gif Generator")
gr.Markdown("Create GIFs with Flux-dev. Based on @dn6's [space](https://huggingface.co/spaces/dn6/FLUX-GIFs) and @fofr's [tweet](https://x.com/fofrAI/status/1828910395962343561).")
gr.Markdown("Add LoRA (if needed) in Advanced Settings. For better results, include a description of the motion in your prompt.")
# gr.Markdown("For better results include a description of the motion in your prompt")
# with gr.Row():
# with gr.Column():
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, max_lines=4, show_copy_button = True, placeholder="Enter your prompt", container=False)
submit = gr.Button("Submit", scale=0)
output = gr.Image(label="GIF", show_label=False)
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills")
with gr.Accordion("Advanced Settings", open=False):
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=predict,
inputs=[prompt],
outputs=[output, output_stills, seed],
cache_examples="lazy"
)
gr.on(
triggers=[submit.click, prompt.submit],
fn=predict,
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, custom_lora],
outputs = [output, output_stills, seed]
)
demo.launch()