Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import random
|
4 |
+
import requests
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
MAX_SEED = np.iinfo(np.int32).max
|
11 |
+
|
12 |
+
API_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
14 |
+
timeout = 100
|
15 |
+
|
16 |
+
|
17 |
+
def split_image(input_image, num_splits=4):
|
18 |
+
output_images = []
|
19 |
+
|
20 |
+
# Define the coordinates for the 2x2 grid (left-to-right, top-to-bottom)
|
21 |
+
boxes = [
|
22 |
+
(0, 0, 512, 512), # Top-left
|
23 |
+
(512, 0, 1024, 512), # Top-right
|
24 |
+
(0, 512, 512, 1024), # Bottom-left
|
25 |
+
(512, 512, 1024, 1024) # Bottom-right
|
26 |
+
]
|
27 |
+
|
28 |
+
# Crop the input image based on the defined boxes
|
29 |
+
for box in boxes:
|
30 |
+
output_images.append(input_image.crop(box))
|
31 |
+
|
32 |
+
return output_images
|
33 |
+
|
34 |
+
|
35 |
+
# Function to export split images to GIF
|
36 |
+
def export_to_gif(images, output_path, fps=4):
|
37 |
+
# Calculate duration per frame in milliseconds based on fps
|
38 |
+
duration = int(1000 / fps)
|
39 |
+
|
40 |
+
# Create a GIF from the list of images
|
41 |
+
images[0].save(
|
42 |
+
output_path,
|
43 |
+
save_all=True,
|
44 |
+
append_images=images[1:],
|
45 |
+
duration=duration, # Duration between frames
|
46 |
+
loop=0 # Loop forever
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def predict(prompt, seed=-1, randomize_seed=True, guidance_scale=3.5, num_inference_steps=28, lora_id="black-forest-labs/FLUX.1-dev", progress=gr.Progress(track_tqdm=True)):
|
51 |
+
prompt_template = f"""a 2x2 total 4 grid of frames, showing consecutive stills from a looped gif of {prompt}"""
|
52 |
+
|
53 |
+
if lora_id.strip() == "" or lora_id == None:
|
54 |
+
lora_id = "black-forest-labs/FLUX.1-dev"
|
55 |
+
|
56 |
+
if randomize_seed:
|
57 |
+
seed = random.randint(0, MAX_SEED)
|
58 |
+
|
59 |
+
key = random.randint(0, 999)
|
60 |
+
|
61 |
+
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
62 |
+
|
63 |
+
API_TOKEN = random.choice([os.getenv("HF_TOKEN")])
|
64 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
65 |
+
|
66 |
+
payload = {
|
67 |
+
"inputs": prompt_template,
|
68 |
+
"steps": num_inference_steps,
|
69 |
+
"cfg_scale": guidance_scale,
|
70 |
+
"seed": seed,
|
71 |
+
}
|
72 |
+
|
73 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
74 |
+
if response.status_code != 200:
|
75 |
+
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
76 |
+
print(f"Response content: {response.text}")
|
77 |
+
if response.status_code == 503:
|
78 |
+
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
79 |
+
raise gr.Error(f"{response.status_code}")
|
80 |
+
|
81 |
+
try:
|
82 |
+
image_bytes = response.content
|
83 |
+
image = Image.open(io.BytesIO(image_bytes))
|
84 |
+
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
85 |
+
|
86 |
+
split_images = split_image(image, num_splits=4)
|
87 |
+
|
88 |
+
# Path to save the GIF
|
89 |
+
gif_path = "output.gif"
|
90 |
+
|
91 |
+
# Export the split images to GIF
|
92 |
+
export_to_gif(split_images, gif_path, fps=4)
|
93 |
+
return gif_path, image, seed
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Error when trying to open the image: {e}")
|
96 |
+
return None
|
97 |
+
|
98 |
+
|
99 |
+
demo = gr.Interface(fn=predict, inputs="text", outputs="image")
|
100 |
+
|
101 |
+
css="""
|
102 |
+
#col-container {
|
103 |
+
margin: 0 auto;
|
104 |
+
max-width: 520px;
|
105 |
+
}
|
106 |
+
#stills{max-height:160px}
|
107 |
+
"""
|
108 |
+
examples = [
|
109 |
+
"a cat waving its paws in the air",
|
110 |
+
"a panda moving their hips from side to side",
|
111 |
+
"a flower going through the process of blooming"
|
112 |
+
]
|
113 |
+
|
114 |
+
with gr.Blocks(css=css) as demo:
|
115 |
+
with gr.Column(elem_id="col-container"):
|
116 |
+
gr.Markdown("# FLUX Gif Generator")
|
117 |
+
gr.Markdown("Create GIFs with Flux-dev. Based on @dn6's [space](https://huggingface.co/spaces/dn6/FLUX-GIFs) and @fofr's [tweet](https://x.com/fofrAI/status/1828910395962343561).")
|
118 |
+
gr.Markdown("Add LoRA (if needed) in Advanced Settings. For better results, include a description of the motion in your prompt.")
|
119 |
+
# gr.Markdown("For better results include a description of the motion in your prompt")
|
120 |
+
# with gr.Row():
|
121 |
+
# with gr.Column():
|
122 |
+
with gr.Row():
|
123 |
+
prompt = gr.Text(label="Prompt", show_label=False, max_lines=4, show_copy_button = True, placeholder="Enter your prompt", container=False)
|
124 |
+
submit = gr.Button("Submit", scale=0)
|
125 |
+
|
126 |
+
output = gr.Image(label="GIF", show_label=False)
|
127 |
+
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills")
|
128 |
+
with gr.Accordion("Advanced Settings", open=False):
|
129 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
|
130 |
+
seed = gr.Slider(
|
131 |
+
label="Seed",
|
132 |
+
minimum=0,
|
133 |
+
maximum=MAX_SEED,
|
134 |
+
step=1,
|
135 |
+
value=0,
|
136 |
+
)
|
137 |
+
|
138 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
guidance_scale = gr.Slider(
|
142 |
+
label="Guidance Scale",
|
143 |
+
minimum=1,
|
144 |
+
maximum=15,
|
145 |
+
step=0.1,
|
146 |
+
value=3.5,
|
147 |
+
)
|
148 |
+
num_inference_steps = gr.Slider(
|
149 |
+
label="Number of inference steps",
|
150 |
+
minimum=1,
|
151 |
+
maximum=50,
|
152 |
+
step=1,
|
153 |
+
value=28,
|
154 |
+
)
|
155 |
+
|
156 |
+
gr.Examples(
|
157 |
+
examples=examples,
|
158 |
+
fn=predict,
|
159 |
+
inputs=[prompt],
|
160 |
+
outputs=[output, output_stills, seed],
|
161 |
+
cache_examples="lazy"
|
162 |
+
)
|
163 |
+
gr.on(
|
164 |
+
triggers=[submit.click, prompt.submit],
|
165 |
+
fn=predict,
|
166 |
+
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps, custom_lora],
|
167 |
+
outputs = [output, output_stills, seed]
|
168 |
+
)
|
169 |
+
|
170 |
+
demo.launch()
|