Spaces:
Running
on
A10G
Running
on
A10G
File size: 22,836 Bytes
eb9a9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import random
import os
import PIL
import torch
import warnings
warnings.filterwarnings("ignore")
from transformers import set_seed
from tqdm import tqdm
from transformers import logging
from diffusers import ControlNetModel, StableDiffusionControlNetImg2ImgPipeline, DDIMScheduler
import torch.nn as nn
import numpy as np
import utils.constants as const
import utils.feature_utils as fu
import utils.preprocesser_utils as pu
import utils.image_process_utils as ipu
logging.set_verbosity_error()
def set_seed_lib(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
set_seed(seed)
@torch.no_grad()
class RAVE_MultiControlNet(nn.Module):
def __init__(self, device):
super().__init__()
self.device = device
self.dtype = torch.float
@torch.no_grad()
def __init_pipe(self, hf_cn_path, hf_path):
controlnet_1 = ControlNetModel.from_pretrained(hf_cn_path[0], torch_dtype=self.dtype).to(self.device, self.dtype)
controlnet_2 = ControlNetModel.from_pretrained(hf_cn_path[1], torch_dtype=self.dtype).to(self.device, self.dtype)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(hf_path, controlnet=[controlnet_1, controlnet_2], torch_dtype=self.dtype).to(self.device, self.dtype)
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
return pipe
@torch.no_grad()
def init_models(self, hf_cn_path, hf_path, preprocess_name, model_id=None):
if model_id is None or model_id == "None":
pipe = self.__init_pipe(hf_cn_path, hf_path)
else:
pipe = self.__init_pipe(hf_cn_path, model_id)
self.preprocess_name_1, self.preprocess_name_2 = preprocess_name.split('-')
self._prepare_control_image = pipe.prepare_control_image
self.run_safety_checker = pipe.run_safety_checker
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.vae = pipe.vae
self.unet = pipe.unet
self.controlnet = pipe.controlnet
self.scheduler_config = pipe.scheduler.config
del pipe
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt):
# prompt, negative_prompt: [str]
# Tokenize text and get embeddings
cond_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
cond_embeddings = self.text_encoder(cond_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
return cond_embeddings, uncond_embeddings
@torch.no_grad()
def prepare_control_image(self, control_pil, width, height):
control_image = self._prepare_control_image(
image=control_pil,
width=width,
height=height,
device=self.device,
dtype=self.controlnet.dtype,
batch_size=1,
num_images_per_prompt=1
)
return control_image
@torch.no_grad()
def pred_controlnet_sampling(self, current_sampling_percent, latent_model_input, t, text_embeddings, control_image):
if (current_sampling_percent < self.controlnet_guidance_start or current_sampling_percent > self.controlnet_guidance_end):
down_block_res_samples = None
mid_block_res_sample = None
else:
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
conditioning_scale=self.controlnet_conditioning_scale,
encoder_hidden_states=text_embeddings,
controlnet_cond=control_image,
return_dict=False,
)
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample)['sample']
return noise_pred
@torch.no_grad()
def denoising_step(self, latents, control_image_1, control_image_2, text_embeddings, t, guidance_scale, current_sampling_percent):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
control_image_1 = torch.cat([control_image_1] * 2)
control_image_2 = torch.cat([control_image_2] * 2)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# compute the percentage of total steps we are at
noise_pred = self.pred_controlnet_sampling(current_sampling_percent, latent_model_input, t, text_embeddings, [control_image_1, control_image_2])
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
return latents
@torch.no_grad()
def preprocess_control_grid(self, image_pil):
list_of_image_pils = fu.pil_grid_to_frames(image_pil, grid_size=self.grid) # List[C, W, H] -> len = num_frames
list_of_pils_1, list_of_pils_2 = [], []
for frame_pil in list_of_image_pils:
frame_pil_1 = pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name_1)
frame_pil_2 = pu.pixel_perfect_process(np.array(frame_pil, dtype='uint8'), self.preprocess_name_2)
list_of_pils_1.append(frame_pil_1)
list_of_pils_2.append(frame_pil_2)
control_images_1 = np.array(list_of_pils_1)
control_images_2 = np.array(list_of_pils_2)
control_img_1 = ipu.create_grid_from_numpy(control_images_1, grid_size=self.grid)
control_img_1 = PIL.Image.fromarray(control_img_1).convert("L")
control_img_2 = ipu.create_grid_from_numpy(control_images_2, grid_size=self.grid)
control_img_2 = PIL.Image.fromarray(control_img_2).convert("L")
return control_img_1, control_img_2
@torch.no_grad()
def shuffle_latents(self, latents, control_image_1, control_image_2, indices):
rand_i = torch.randperm(self.total_frame_number).tolist()
# latents, _ = fu.prepare_key_grid_latents(latents, self.grid, self.grid, rand_i)
# control_image, _ = fu.prepare_key_grid_latents(control_image, self.grid, self.grid, rand_i)
latents_l, controls_l_1, controls_l_2, randx = [], [], [], []
for j in range(self.sample_size):
rand_indices = rand_i[j*self.grid_frame_number:(j+1)*self.grid_frame_number]
latents_keyframe, _ = fu.prepare_key_grid_latents(latents, self.grid, self.grid, rand_indices)
control_keyframe_1, _ = fu.prepare_key_grid_latents(control_image_1, self.grid, self.grid, rand_indices)
control_keyframe_2, _ = fu.prepare_key_grid_latents(control_image_2, self.grid, self.grid, rand_indices)
latents_l.append(latents_keyframe)
controls_l_1.append(control_keyframe_1)
controls_l_2.append(control_keyframe_2)
randx.extend(rand_indices)
rand_i = randx.copy()
latents = torch.cat(latents_l, dim=0)
control_image_1 = torch.cat(controls_l_1, dim=0)
control_image_2 = torch.cat(controls_l_2, dim=0)
indices = [indices[i] for i in rand_i]
return latents, indices, control_image_1, control_image_2
@torch.no_grad()
def batch_denoise(self, latents, control_image_1, control_image_2, indices, t, guidance_scale, current_sampling_percent):
latents_l, controls_l_1, controls_l_2 = [], [], []
control_split_1 = control_image_1.split(self.batch_size, dim=0)
control_split_2 = control_image_2.split(self.batch_size, dim=0)
latents_split = latents.split(self.batch_size, dim=0)
for idx in range(len(control_split_1)):
txt_embed = torch.cat([self.uncond_embeddings] * len(latents_split[idx]) + [self.cond_embeddings] * len(latents_split[idx]))
latents = self.denoising_step(latents_split[idx], control_split_1[idx], control_split_2[idx], txt_embed, t, guidance_scale, current_sampling_percent)
latents_l.append(latents)
controls_l_1.append(control_split_1[idx])
controls_l_2.append(control_split_2[idx])
latents = torch.cat(latents_l, dim=0)
controls_1 = torch.cat(controls_l_1, dim=0)
controls_2 = torch.cat(controls_l_2, dim=0)
return latents, indices, controls_1, controls_2
@torch.no_grad()
def reverse_diffusion(self, latents=None, control_image_1=None, control_image_2=None, guidance_scale=7.5, indices=None):
self.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
with torch.autocast('cuda'):
for i, t in tqdm(enumerate(self.scheduler.timesteps), desc='reverse_diffusion'):
indices = list(indices)
current_sampling_percent = i / len(self.scheduler.timesteps)
if self.is_shuffle:
latents, indices, control_image_1, control_image_2 = self.shuffle_latents(latents, control_image_1, control_image_2, indices)
if self.cond_step_start < current_sampling_percent:
latents, indices, control_image_1, control_image_2 = self.batch_denoise(latents, control_image_1, control_image_2, indices, t, guidance_scale, current_sampling_percent)
else:
latents, indices, control_image_1, control_image_2 = self.batch_denoise(latents, control_image_1, control_image_2, indices, t, 0.0, current_sampling_percent)
return latents, indices, control_image_1, control_image_2
@torch.no_grad()
def encode_imgs(self, img_torch):
latents_l = []
splits = img_torch.split(self.batch_size_vae, dim=0)
for split in splits:
image = 2 * split - 1
posterior = self.vae.encode(image).latent_dist
latents = posterior.mean * self.vae.config.scaling_factor
latents_l.append(latents)
return torch.cat(latents_l, dim=0)
@torch.no_grad()
def decode_latents(self, latents):
image_l = []
splits = latents.split(self.batch_size_vae, dim=0)
for split in splits:
image = self.vae.decode(split / self.vae.config.scaling_factor, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
image_l.append(image)
return torch.cat(image_l, dim=0)
@torch.no_grad()
def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
controlnet_cond=controlnet_cond,
conditioning_scale=self.controlnet_conditioning_scale,
return_dict=False,
)
# apply the denoising network
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
cross_attention_kwargs={},
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def ddim_inversion(self, latents, control_batch_1, control_batch_2, indices):
k = None
els = os.listdir(self.inverse_path)
els = [el for el in els if el.endswith('.pt')]
for k,inv_path in enumerate(sorted(els, key=lambda x: int(x.split('.')[0]))):
latents[k] = torch.load(os.path.join(self.inverse_path, inv_path)).to(device=self.device)
self.inverse_scheduler = DDIMScheduler.from_config(self.scheduler_config)
self.inverse_scheduler.set_timesteps(self.num_inversion_step, device=self.device)
self.timesteps = reversed(self.inverse_scheduler.timesteps)
if k == (latents.shape[0]-1):
return latents, indices, control_batch_1, control_batch_2
inv_cond = torch.cat([self.inv_uncond_embeddings] * 1 + [self.inv_cond_embeddings] * 1)[1].unsqueeze(0)
for i, t in enumerate(tqdm(self.timesteps)):
alpha_prod_t = self.inverse_scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (self.inverse_scheduler.alphas_cumprod[self.timesteps[i - 1]] if i > 0 else self.inverse_scheduler.final_alpha_cumprod)
# latent, indices, control_batch = self.shuffle_latents(latent, control_batch, indices)
latents_l = []
latents_split = latents.split(self.batch_size, dim=0)
control_batch_split_1 = control_batch_1.split(self.batch_size, dim=0)
control_batch_split_2 = control_batch_2.split(self.batch_size, dim=0)
for idx in range(len(latents_split)):
cond_batch = inv_cond.repeat(latents_split[idx].shape[0], 1, 1)
# print(cond_batch.shape, latents_split[idx].shape, control_batch_split_1[idx].shape, control_batch_split_2[idx].shape)
# input()
latents = self.ddim_step(latents_split[idx], t, cond_batch, alpha_prod_t, alpha_prod_t_prev, control_batch_split_1[idx], control_batch_split_2[idx])
latents_l.append(latents)
latents = torch.cat(latents_l, dim=0)
for k,i in enumerate(latents):
torch.save(i.detach().cpu(), f'{self.inverse_path}/{str(k).zfill(5)}.pt')
return latents, indices, control_batch_1, control_batch_2
def ddim_step(self, latent_frames, t, cond_batch, alpha_prod_t, alpha_prod_t_prev, control_batch_1, control_batch_2):
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
if self.give_control_inversion:
eps = self.controlnet_pred(latent_frames, t, text_embed_input=cond_batch, controlnet_cond=[control_batch_1, control_batch_2])
else:
eps = self.unet(latent_frames, t, encoder_hidden_states=cond_batch, return_dict=False)[0]
pred_x0 = (latent_frames - sigma_prev * eps) / mu_prev
latent_frames = mu * pred_x0 + sigma * eps
return latent_frames
def process_image_batch(self, image_pil_list):
if len(os.listdir(self.controls_path)) > 0:
control_torch_1 = torch.load(os.path.join(self.controls_path, 'control_1.pt')).to(self.device)
control_torch_2 = torch.load(os.path.join(self.controls_path, 'control_2.pt')).to(self.device)
img_torch = torch.load(os.path.join(self.controls_path, 'img.pt')).to(self.device)
else:
image_torch_list = []
control_torch_list_1, control_torch_list_2 = [], []
for image_pil in image_pil_list:
width, height = image_pil.size
# control_pil = PIL.Image.fromarray(pu.pixel_perfect_process(np.array(image_pil, dtype='uint8'), self.preprocess_name))
control_pil_1, control_pil_2 = self.preprocess_control_grid(image_pil)
control_image_1 = self.prepare_control_image(control_pil_1, width, height)
control_image_2 = self.prepare_control_image(control_pil_2, width, height)
control_torch_list_1.append(control_image_1)
control_torch_list_2.append(control_image_2)
image_torch_list.append(ipu.pil_img_to_torch_tensor(image_pil))
control_torch_1 = torch.cat(control_torch_list_1, dim=0).to(self.device)
control_torch_2 = torch.cat(control_torch_list_2, dim=0).to(self.device)
img_torch = torch.cat(image_torch_list, dim=0).to(self.device)
torch.save(control_torch_1, os.path.join(self.controls_path, 'control_1.pt'))
torch.save(control_torch_2, os.path.join(self.controls_path, 'control_2.pt'))
torch.save(img_torch, os.path.join(self.controls_path, 'img.pt'))
return img_torch, control_torch_1, control_torch_2
def order_grids(self, list_of_pils, indices):
k = []
for i in range(len(list_of_pils)):
k.extend(fu.pil_grid_to_frames(list_of_pils[i], self.grid))
frames = [k[indices.index(i)] for i in np.arange(len(indices))]
return frames
@torch.no_grad()
def __preprocess_inversion_input(self, init_latents, control_batch_1, control_batch_2):
list_of_flattens = [fu.flatten_grid(el.unsqueeze(0), self.grid) for el in init_latents]
init_latents = torch.cat(list_of_flattens, dim=-1)
init_latents = torch.cat(torch.chunk(init_latents, self.total_frame_number, dim=-1), dim=0)
control_batch_flattens_1 = [fu.flatten_grid(el.unsqueeze(0), self.grid) for el in control_batch_1]
control_batch_1 = torch.cat(control_batch_flattens_1, dim=-1)
control_batch_1 = torch.cat(torch.chunk(control_batch_1, self.total_frame_number, dim=-1), dim=0)
control_batch_flattens_2 = [fu.flatten_grid(el.unsqueeze(0), self.grid) for el in control_batch_2]
control_batch_2 = torch.cat(control_batch_flattens_2, dim=-1)
control_batch_2 = torch.cat(torch.chunk(control_batch_2, self.total_frame_number, dim=-1), dim=0)
return init_latents, control_batch_1, control_batch_2
@torch.no_grad()
def __postprocess_inversion_input(self, latents_inverted, control_batch_1, control_batch_2):
latents_inverted = torch.cat([fu.unflatten_grid(torch.cat([a for a in latents_inverted[i*self.grid_frame_number:(i+1)*self.grid_frame_number]], dim=-1).unsqueeze(0), self.grid) for i in range(self.sample_size)] , dim=0)
control_batch_1 = torch.cat([fu.unflatten_grid(torch.cat([a for a in control_batch_1[i*self.grid_frame_number:(i+1)*self.grid_frame_number]], dim=-1).unsqueeze(0), self.grid) for i in range(self.sample_size)] , dim=0)
control_batch_2 = torch.cat([fu.unflatten_grid(torch.cat([a for a in control_batch_2[i*self.grid_frame_number:(i+1)*self.grid_frame_number]], dim=-1).unsqueeze(0), self.grid) for i in range(self.sample_size)] , dim=0)
return latents_inverted, control_batch_1, control_batch_2
@torch.no_grad()
def __call__(self, input_dict):
set_seed_lib(input_dict['seed'])
self.grid_size = input_dict['grid_size']
self.sample_size = input_dict['sample_size']
self.grid_frame_number = self.grid_size * self.grid_size
self.total_frame_number = (self.grid_frame_number) * self.sample_size
self.grid = [self.grid_size, self.grid_size]
self.cond_step_start = input_dict['cond_step_start']
self.controlnet_guidance_start = input_dict['controlnet_guidance_start']
self.controlnet_guidance_end = input_dict['controlnet_guidance_end']
self.controlnet_conditioning_scale = [float(x) for x in input_dict['controlnet_conditioning_scale'].split('-')]
self.positive_prompts = input_dict['positive_prompts']
self.negative_prompts = input_dict['negative_prompts']
self.inversion_prompt = input_dict['inversion_prompt']
self.batch_size = input_dict['batch_size']
self.batch_size_vae = input_dict['batch_size_vae']
self.num_inference_steps = input_dict['num_inference_steps']
self.num_inversion_step = input_dict['num_inversion_step']
self.inverse_path = input_dict['inverse_path']
self.controls_path = input_dict['control_path']
self.is_ddim_inversion = input_dict['is_ddim_inversion']
self.is_shuffle = input_dict['is_shuffle']
self.give_control_inversion = input_dict['give_control_inversion']
self.guidance_scale = input_dict['guidance_scale']
indices = list(np.arange(self.total_frame_number))
img_batch, control_batch_1, control_batch_2 = self.process_image_batch(input_dict['image_pil_list'])
init_latents_pre = self.encode_imgs(img_batch)
self.scheduler = DDIMScheduler.from_config(self.scheduler_config)
self.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
self.inv_cond_embeddings, self.inv_uncond_embeddings = self.get_text_embeds(self.inversion_prompt, "")
if self.is_ddim_inversion:
init_latents, control_batch_1, control_batch_2 = self.__preprocess_inversion_input(init_latents_pre, control_batch_1, control_batch_2)
latents_inverted, indices, control_batch_1, control_batch_2 = self.ddim_inversion(init_latents, control_batch_1, control_batch_2, indices)
latents_inverted, control_batch_1, control_batch_2 = self.__postprocess_inversion_input(latents_inverted, control_batch_1, control_batch_2)
else:
init_latents_pre = torch.cat([init_latents_pre], dim=0)
noise = torch.randn_like(init_latents_pre)
latents_inverted = self.scheduler.add_noise(init_latents_pre, noise, self.scheduler.timesteps[:1])
self.cond_embeddings, self.uncond_embeddings = self.get_text_embeds(self.positive_prompts, self.negative_prompts)
latents_denoised, indices, controls_1, controls_2 = self.reverse_diffusion(latents_inverted, control_batch_1, control_batch_2, self.guidance_scale, indices=indices)
image_torch = self.decode_latents(latents_denoised)
ordered_img_frames = self.order_grids(ipu.torch_to_pil_img_batch(image_torch), indices)
ordered_control_frames_1 = self.order_grids(ipu.torch_to_pil_img_batch(controls_1), indices)
ordered_control_frames_2 = self.order_grids(ipu.torch_to_pil_img_batch(controls_2), indices)
return ordered_img_frames, ordered_control_frames_1, ordered_control_frames_2
|