Spaces:
Running
on
A10G
Running
on
A10G
File size: 15,615 Bytes
eb9a9b4 9303843 7c1f7c3 eb9a9b4 7c1f7c3 eb9a9b4 7c1f7c3 2536180 7c1f7c3 eb9a9b4 7c1f7c3 9303843 7c1f7c3 9303843 7c1f7c3 9303843 7c1f7c3 9303843 7c1f7c3 9303843 7c1f7c3 d54a043 7c1f7c3 0d607ed dfa1bd7 7c1f7c3 d204968 e686ff4 d204968 0b5dd3b d204968 7c1f7c3 dfa1bd7 7c1f7c3 dfa1bd7 7c1f7c3 dfa1bd7 2536180 7c1f7c3 dfa1bd7 7c1f7c3 e686ff4 7c1f7c3 e686ff4 7c1f7c3 9303843 7c1f7c3 2536180 7c1f7c3 eb9a9b4 9f3e617 e4a5521 7c1f7c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import os
import torch
import argparse
import os
import sys
import yaml
import datetime
sys.path.append(os.path.dirname(os.getcwd()))
from pipelines.sd_controlnet_rave import RAVE
from pipelines.sd_multicontrolnet_rave import RAVE_MultiControlNet
import subprocess
import utils.constants as const
import utils.video_grid_utils as vgu
import warnings
warnings.filterwarnings("ignore")
import pprint
import glob
def init_device():
device_name = 'cuda' if torch.cuda.is_available() else 'cpu'
device = torch.device(device_name)
return device
def init_paths(input_ns):
if input_ns.save_folder == None or input_ns.save_folder == '':
input_ns.save_folder = input_ns.video_name
else:
input_ns.save_folder = os.path.join(input_ns.save_folder, input_ns.video_name)
save_dir = os.path.join(const.OUTPUT_PATH, input_ns.save_folder)
os.makedirs(save_dir, exist_ok=True)
save_idx = max([int(x[-5:]) for x in os.listdir(save_dir)])+1 if os.listdir(save_dir) != [] else 0
input_ns.save_path = os.path.join(save_dir, f'{input_ns.positive_prompts}-{str(save_idx).zfill(5)}')
if '-' in input_ns.preprocess_name:
input_ns.hf_cn_path = [const.PREPROCESSOR_DICT[i] for i in input_ns.preprocess_name.split('-')]
else:
input_ns.hf_cn_path = const.PREPROCESSOR_DICT[input_ns.preprocess_name]
input_ns.hf_path = "runwayml/stable-diffusion-v1-5"
input_ns.inverse_path = os.path.join(const.GENERATED_DATA_PATH, 'inverses', input_ns.video_name, f'{input_ns.preprocess_name}_{input_ns.model_id}_{input_ns.grid_size}x{input_ns.grid_size}_{input_ns.pad}')
input_ns.control_path = os.path.join(const.GENERATED_DATA_PATH, 'controls', input_ns.video_name, f'{input_ns.preprocess_name}_{input_ns.grid_size}x{input_ns.grid_size}_{input_ns.pad}')
os.makedirs(input_ns.control_path, exist_ok=True)
os.makedirs(input_ns.inverse_path, exist_ok=True)
os.makedirs(input_ns.save_path, exist_ok=True)
return input_ns
def install_civitai_model(model_id):
full_path = os.path.join(const.CWD, 'CIVIT_AI', 'diffusers_models', model_id, '*')
if len(glob.glob(full_path)) > 0:
full_path = glob.glob(full_path)[0]
return full_path
install_path = os.path.join(const.CWD, 'CIVIT_AI', 'safetensors')
install_path_model = os.path.join(const.CWD, 'CIVIT_AI', 'safetensors', model_id)
diffusers_path = os.path.join(const.CWD, 'CIVIT_AI', 'diffusers_models', model_id)
convert_py_path = os.path.join(const.CWD, 'CIVIT_AI', 'convert.py')
os.makedirs(install_path, exist_ok=True)
os.makedirs(diffusers_path, exist_ok=True)
subprocess.run(f'wget https://civitai.com/api/download/models/{model_id} --content-disposition --directory {install_path_model}'.split())
model_name = glob.glob(os.path.join(install_path, model_id, '*'))[0]
model_name2 = os.path.basename(glob.glob(os.path.join(install_path, model_id, '*'))[0]).replace('.safetensors', '')
diffusers_path_model_name = os.path.join(const.CWD, 'CIVIT_AI', 'diffusers_models', model_id, model_name2)
print(model_name)
subprocess.run(f'python {convert_py_path} --checkpoint_path {model_name} --dump_path {diffusers_path_model_name} --from_safetensors'.split())
subprocess.run(f'rm -rf {install_path}'.split())
return diffusers_path_model_name
def run(*args):
batch_size = 4
batch_size_vae = 1
is_ddim_inversion = True
is_shuffle = True
num_inference_steps = 20
num_inversion_step = 20
cond_step_start = 0.0
give_control_inversion = True
inversion_prompt = ''
save_folder = ''
list_of_inputs = [x for x in args]
input_ns = argparse.Namespace(**{})
input_ns.video_path = list_of_inputs[0] # video_path
input_ns.video_name = os.path.basename(input_ns.video_path).replace('.mp4', '').replace('.gif', '')
input_ns.preprocess_name = list_of_inputs[1]
input_ns.batch_size = batch_size
input_ns.batch_size_vae = batch_size_vae
input_ns.cond_step_start = cond_step_start
input_ns.controlnet_conditioning_scale = list_of_inputs[2]
input_ns.controlnet_guidance_end = list_of_inputs[3]
input_ns.controlnet_guidance_start = list_of_inputs[4]
input_ns.give_control_inversion = give_control_inversion
input_ns.grid_size = list_of_inputs[5]
input_ns.sample_size = list_of_inputs[6]
input_ns.pad = list_of_inputs[7]
input_ns.guidance_scale = list_of_inputs[8]
input_ns.inversion_prompt = inversion_prompt
input_ns.is_ddim_inversion = is_ddim_inversion
input_ns.is_shuffle = is_shuffle
input_ns.negative_prompts = list_of_inputs[9]
input_ns.num_inference_steps = num_inference_steps
input_ns.num_inversion_step = num_inversion_step
input_ns.positive_prompts = list_of_inputs[10]
input_ns.save_folder = save_folder
input_ns.seed = list_of_inputs[11]
input_ns.model_id = const.MODEL_IDS[list_of_inputs[12]]
# input_ns.width = list_of_inputs[23]
# input_ns.height = list_of_inputs[24]
# input_ns.original_size = list_of_inputs[25]
diffusers_model_path = os.path.join(const.CWD, 'CIVIT_AI', 'diffusers_models')
os.makedirs(diffusers_model_path, exist_ok=True)
if 'model_id' not in list(input_ns.__dict__.keys()):
input_ns.model_id = "None"
if str(input_ns.model_id) != 'None':
input_ns.model_id = install_civitai_model(input_ns.model_id)
device = init_device()
input_ns = init_paths(input_ns)
input_ns.image_pil_list = vgu.prepare_video_to_grid(input_ns.video_path, input_ns.sample_size, input_ns.grid_size, input_ns.pad)
print(input_ns.video_path)
input_ns.sample_size = len(input_ns.image_pil_list)
print(f'Frame count: {len(input_ns.image_pil_list)}')
controlnet_class = RAVE_MultiControlNet if '-' in str(input_ns.controlnet_conditioning_scale) else RAVE
CN = controlnet_class(device)
CN.init_models(input_ns.hf_cn_path, input_ns.hf_path, input_ns.preprocess_name, input_ns.model_id)
input_dict = vars(input_ns)
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(input_dict)
yaml_dict = {k:v for k,v in input_dict.items() if k != 'image_pil_list'}
start_time = datetime.datetime.now()
if '-' in str(input_ns.controlnet_conditioning_scale):
res_vid, control_vid_1, control_vid_2 = CN(input_dict)
else:
res_vid, control_vid = CN(input_dict)
end_time = datetime.datetime.now()
# res_vid = [x.crop() .resize((x.size[0], x.size[1])) for x in res_vid]
# control_vid = [x[2:-2, 2:-2].resize((x.size[0], x.size[1])) for x in control_vid]
save_name = f"{'-'.join(input_ns.positive_prompts.split())}_cstart-{input_ns.controlnet_guidance_start}_gs-{input_ns.guidance_scale}_pre-{'-'.join((input_ns.preprocess_name.replace('-','+').split('_')))}_cscale-{input_ns.controlnet_conditioning_scale}_grid-{input_ns.grid_size}_pad-{input_ns.pad}_model-{os.path.basename(input_ns.model_id)}"
res_vid[0].save(os.path.join(input_ns.save_path, f'{save_name}.gif'), save_all=True, append_images=res_vid[1:], loop=10000)
control_vid[0].save(os.path.join(input_ns.save_path, f'control_{save_name}.gif'), save_all=True, append_images=control_vid[1:], optimize=False, loop=10000)
yaml_dict['total_time'] = (end_time - start_time).total_seconds()
yaml_dict['total_number_of_frames'] = len(res_vid)
yaml_dict['sec_per_frame'] = yaml_dict['total_time']/yaml_dict['total_number_of_frames']
with open(os.path.join(input_ns.save_path, 'config.yaml'), 'w') as yaml_file:
yaml.dump(yaml_dict, yaml_file)
return os.path.join(input_ns.save_path, f'{save_name}.gif'), os.path.join(input_ns.save_path, f'control_{save_name}.gif')
def output_video_fn(video_path, text_prompt):
fold_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "example_videos")
video_path = os.path.join(fold_path, os.path.basename(video_path).replace('input', 'output'))
return video_path
block = gr.Blocks().queue()
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
<a href="https://rave-video.github.io/" style="color:blue;">
RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models</a>
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
Ozgur Kara<sup>1</sup>, Bariscan Kurtkaya<sup>2</sup>, Hidir Yesiltepe<sup>4</sup>, James M. Rehg<sup>1,3</sup>, Pinar Yanardag<sup>4</sup>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<sup>1</sup>Georgia Institute of Technology, <sup>2</sup>KUIS AI Center, <sup>3</sup>University of Illinois Urbana-Champaign, <sup>4</sup>Virginia Tech
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://arxiv.org/abs/2312.04524" style="color:blue;">arXiv</a>]
[<a href="https://github.com/rehg-lab/RAVE" style="color:blue;">GitHub</a>]
[<a href="https://rave-video.github.io/" style="color:blue;">Project Webpage</a>]
</h2>
<h2 style="font-weight: 450; font-size: 1rem;">
TL; DR: RAVE is a zero-shot, lightweight, and fast framework for text-guided video editing, supporting videos of any length utilizing text-to-image pretrained diffusion models.
</h2>
<h2 style="font-weight: 450; font-size: 1rem;">
Note that this page is a limited demo of RAVE. To run with more configurations, please check out our GitHub page.
</h2>
</div>
""")
with gr.Row():
with gr.Column():
with gr.Row():
input_path = gr.File(label='Upload Input Video', file_types=['.mp4'], scale=1)
inputs = gr.Video(label='Input Video',
format='mp4',
visible=True,
interactive=False,
scale=5)
input_path.upload(lambda x:x, inputs=[input_path], outputs=[inputs])
gr.Markdown('# Example Video Edits')
with gr.Row():
example_input = gr.Video(label='Input Example',
format='mp4',
visible=True,
interactive=False)
example_output = gr.Video(label='Output Example',
format='mp4',
visible=True,
interactive=False)
# input(os.path.join(os.path.dirname(os.path.abspath(__file__)), "example_videos", "exp_input_1.mp4"))
ex_prompt = gr.Textbox(label='Text Prompt', interactive=False)
with gr.Row():
ex_list = []
ex_prompt_dict = {
'1': "A black panther",
'2': "A medieval knight",
'3': "Swarovski blue crystal swan",
'4': "Switzerland SBB CFF FFS train",
'5': "White cupcakes, moving on the table",
}
for i in range(1,6):
ex_list.append([os.path.join(os.path.dirname(os.path.abspath(__file__)), "example_videos", f"exp_input_{i}.mp4"), ex_prompt_dict[str(i)]])
ex = gr.Examples(
examples=ex_list,
inputs=[example_input, ex_prompt],
outputs=example_output,
fn=output_video_fn,
cache_examples=True,)
with gr.Column():
with gr.Row():
result_video = gr.Image(label='Edited Video',
interactive=False)
control_video = gr.Image(label='Control Video',
interactive=False)
with gr.Row():
positive_prompts = gr.Textbox(label='Positive prompts')
negative_prompts = gr.Textbox(label='Negative prompts')
model_id = gr.Dropdown(const.MODEL_IDS,
label='Model id',
value='SD 1.5')
with gr.Row():
preprocess_list = ['depth_zoe', 'lineart_realistic', 'lineart_standard', 'softedge_hed']
preprocess_name = gr.Dropdown(preprocess_list,
label='Control type',
value='depth_zoe')
guidance_scale = gr.Slider(label='Guidance scale',
minimum=0,
maximum=40,
step=0.1,
value=7.5)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=2147483647,
step=1,
value=0,
randomize=True)
run_button = gr.Button(value='Run All')
with gr.Accordion('Configuration',
open=False):
with gr.Row():
controlnet_conditioning_scale = gr.Slider(label='ControlNet conditioning scale',
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.01)
controlnet_guidance_end = gr.Slider(label='ControlNet guidance end',
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.01)
controlnet_guidance_start = gr.Slider(label='ControlNet guidance start',
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01)
with gr.Row():
grid_size = gr.Slider(label='Grid size (n x n)',
minimum=2,
maximum=3,
value=3,
step=1)
sample_size = gr.Slider(label='Number of grids',
minimum=1,
maximum=10,
value=1,
step=1)
pad = gr.Slider(label='Pad',
minimum=1,
maximum=5,
value=2,
step=1)
inputs = [input_path, preprocess_name, controlnet_conditioning_scale, controlnet_guidance_end, controlnet_guidance_start, grid_size, sample_size, pad, guidance_scale, negative_prompts, positive_prompts, seed, model_id]
run_button.click(fn=run,
inputs=inputs,
outputs=[result_video, control_video])
if __name__ == "__main__":
block.queue(max_size=20)
block.launch(share=True) |