Spaces:
Running
on
A10G
Running
on
A10G
File size: 4,324 Bytes
eb9a9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import torch
import numpy as np
from basicsr.utils.download_util import load_file_from_url
import torch.nn as nn
from einops import rearrange
import utils.constants as const
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
models_path = f'{const.CWD}/pretrained_models'
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartDetector:
model_dir = os.path.join(models_path, "lineart")
model_default = 'sk_model.pth'
model_coarse = 'sk_model2.pth'
def __init__(self, model_name):
self.model = None
self.model_name = model_name
self.device = DEVICE
def load_model(self, name):
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
model_path = os.path.join(self.model_dir, name)
if not os.path.exists(model_path):
load_file_from_url(remote_model_path, model_dir=self.model_dir)
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
self.model = model.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model(self.model_name)
self.model.to(self.device)
assert input_image.ndim == 3
image = input_image
with torch.no_grad():
image = torch.from_numpy(image).float().to(self.device)
image = image / 255.0
image = rearrange(image, 'h w c -> 1 c h w')
line = self.model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
return line |