File size: 23,931 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

"""

Common data processing utilities that are used in a

typical object detection data pipeline.

"""
import logging
import numpy as np
from typing import List, Union
import annotator.oneformer.pycocotools.mask as mask_util
import torch
from PIL import Image

from annotator.oneformer.detectron2.structures import (
    BitMasks,
    Boxes,
    BoxMode,
    Instances,
    Keypoints,
    PolygonMasks,
    RotatedBoxes,
    polygons_to_bitmask,
)
from annotator.oneformer.detectron2.utils.file_io import PathManager

from . import transforms as T
from .catalog import MetadataCatalog

__all__ = [
    "SizeMismatchError",
    "convert_image_to_rgb",
    "check_image_size",
    "transform_proposals",
    "transform_instance_annotations",
    "annotations_to_instances",
    "annotations_to_instances_rotated",
    "build_augmentation",
    "build_transform_gen",
    "create_keypoint_hflip_indices",
    "filter_empty_instances",
    "read_image",
]


class SizeMismatchError(ValueError):
    """

    When loaded image has difference width/height compared with annotation.

    """


# https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601
_M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]]
_M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]]

# https://www.exiv2.org/tags.html
_EXIF_ORIENT = 274  # exif 'Orientation' tag


def convert_PIL_to_numpy(image, format):
    """

    Convert PIL image to numpy array of target format.



    Args:

        image (PIL.Image): a PIL image

        format (str): the format of output image



    Returns:

        (np.ndarray): also see `read_image`

    """
    if format is not None:
        # PIL only supports RGB, so convert to RGB and flip channels over below
        conversion_format = format
        if format in ["BGR", "YUV-BT.601"]:
            conversion_format = "RGB"
        image = image.convert(conversion_format)
    image = np.asarray(image)
    # PIL squeezes out the channel dimension for "L", so make it HWC
    if format == "L":
        image = np.expand_dims(image, -1)

    # handle formats not supported by PIL
    elif format == "BGR":
        # flip channels if needed
        image = image[:, :, ::-1]
    elif format == "YUV-BT.601":
        image = image / 255.0
        image = np.dot(image, np.array(_M_RGB2YUV).T)

    return image


def convert_image_to_rgb(image, format):
    """

    Convert an image from given format to RGB.



    Args:

        image (np.ndarray or Tensor): an HWC image

        format (str): the format of input image, also see `read_image`



    Returns:

        (np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8

    """
    if isinstance(image, torch.Tensor):
        image = image.cpu().numpy()
    if format == "BGR":
        image = image[:, :, [2, 1, 0]]
    elif format == "YUV-BT.601":
        image = np.dot(image, np.array(_M_YUV2RGB).T)
        image = image * 255.0
    else:
        if format == "L":
            image = image[:, :, 0]
        image = image.astype(np.uint8)
        image = np.asarray(Image.fromarray(image, mode=format).convert("RGB"))
    return image


def _apply_exif_orientation(image):
    """

    Applies the exif orientation correctly.



    This code exists per the bug:

      https://github.com/python-pillow/Pillow/issues/3973

    with the function `ImageOps.exif_transpose`. The Pillow source raises errors with

    various methods, especially `tobytes`



    Function based on:

      https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59

      https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527



    Args:

        image (PIL.Image): a PIL image



    Returns:

        (PIL.Image): the PIL image with exif orientation applied, if applicable

    """
    if not hasattr(image, "getexif"):
        return image

    try:
        exif = image.getexif()
    except Exception:  # https://github.com/facebookresearch/detectron2/issues/1885
        exif = None

    if exif is None:
        return image

    orientation = exif.get(_EXIF_ORIENT)

    method = {
        2: Image.FLIP_LEFT_RIGHT,
        3: Image.ROTATE_180,
        4: Image.FLIP_TOP_BOTTOM,
        5: Image.TRANSPOSE,
        6: Image.ROTATE_270,
        7: Image.TRANSVERSE,
        8: Image.ROTATE_90,
    }.get(orientation)

    if method is not None:
        return image.transpose(method)
    return image


def read_image(file_name, format=None):
    """

    Read an image into the given format.

    Will apply rotation and flipping if the image has such exif information.



    Args:

        file_name (str): image file path

        format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601".



    Returns:

        image (np.ndarray):

            an HWC image in the given format, which is 0-255, uint8 for

            supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601.

    """
    with PathManager.open(file_name, "rb") as f:
        image = Image.open(f)

        # work around this bug: https://github.com/python-pillow/Pillow/issues/3973
        image = _apply_exif_orientation(image)
        return convert_PIL_to_numpy(image, format)


def check_image_size(dataset_dict, image):
    """

    Raise an error if the image does not match the size specified in the dict.

    """
    if "width" in dataset_dict or "height" in dataset_dict:
        image_wh = (image.shape[1], image.shape[0])
        expected_wh = (dataset_dict["width"], dataset_dict["height"])
        if not image_wh == expected_wh:
            raise SizeMismatchError(
                "Mismatched image shape{}, got {}, expect {}.".format(
                    " for image " + dataset_dict["file_name"]
                    if "file_name" in dataset_dict
                    else "",
                    image_wh,
                    expected_wh,
                )
                + " Please check the width/height in your annotation."
            )

    # To ensure bbox always remap to original image size
    if "width" not in dataset_dict:
        dataset_dict["width"] = image.shape[1]
    if "height" not in dataset_dict:
        dataset_dict["height"] = image.shape[0]


def transform_proposals(dataset_dict, image_shape, transforms, *, proposal_topk, min_box_size=0):
    """

    Apply transformations to the proposals in dataset_dict, if any.



    Args:

        dataset_dict (dict): a dict read from the dataset, possibly

            contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode"

        image_shape (tuple): height, width

        transforms (TransformList):

        proposal_topk (int): only keep top-K scoring proposals

        min_box_size (int): proposals with either side smaller than this

            threshold are removed



    The input dict is modified in-place, with abovementioned keys removed. A new

    key "proposals" will be added. Its value is an `Instances`

    object which contains the transformed proposals in its field

    "proposal_boxes" and "objectness_logits".

    """
    if "proposal_boxes" in dataset_dict:
        # Transform proposal boxes
        boxes = transforms.apply_box(
            BoxMode.convert(
                dataset_dict.pop("proposal_boxes"),
                dataset_dict.pop("proposal_bbox_mode"),
                BoxMode.XYXY_ABS,
            )
        )
        boxes = Boxes(boxes)
        objectness_logits = torch.as_tensor(
            dataset_dict.pop("proposal_objectness_logits").astype("float32")
        )

        boxes.clip(image_shape)
        keep = boxes.nonempty(threshold=min_box_size)
        boxes = boxes[keep]
        objectness_logits = objectness_logits[keep]

        proposals = Instances(image_shape)
        proposals.proposal_boxes = boxes[:proposal_topk]
        proposals.objectness_logits = objectness_logits[:proposal_topk]
        dataset_dict["proposals"] = proposals


def get_bbox(annotation):
    """

    Get bbox from data

    Args:

        annotation (dict): dict of instance annotations for a single instance.

    Returns:

        bbox (ndarray): x1, y1, x2, y2 coordinates

    """
    # bbox is 1d (per-instance bounding box)
    bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
    return bbox


def transform_instance_annotations(

    annotation, transforms, image_size, *, keypoint_hflip_indices=None

):
    """

    Apply transforms to box, segmentation and keypoints annotations of a single instance.



    It will use `transforms.apply_box` for the box, and

    `transforms.apply_coords` for segmentation polygons & keypoints.

    If you need anything more specially designed for each data structure,

    you'll need to implement your own version of this function or the transforms.



    Args:

        annotation (dict): dict of instance annotations for a single instance.

            It will be modified in-place.

        transforms (TransformList or list[Transform]):

        image_size (tuple): the height, width of the transformed image

        keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.



    Returns:

        dict:

            the same input dict with fields "bbox", "segmentation", "keypoints"

            transformed according to `transforms`.

            The "bbox_mode" field will be set to XYXY_ABS.

    """
    if isinstance(transforms, (tuple, list)):
        transforms = T.TransformList(transforms)
    # bbox is 1d (per-instance bounding box)
    bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
    # clip transformed bbox to image size
    bbox = transforms.apply_box(np.array([bbox]))[0].clip(min=0)
    annotation["bbox"] = np.minimum(bbox, list(image_size + image_size)[::-1])
    annotation["bbox_mode"] = BoxMode.XYXY_ABS

    if "segmentation" in annotation:
        # each instance contains 1 or more polygons
        segm = annotation["segmentation"]
        if isinstance(segm, list):
            # polygons
            polygons = [np.asarray(p).reshape(-1, 2) for p in segm]
            annotation["segmentation"] = [
                p.reshape(-1) for p in transforms.apply_polygons(polygons)
            ]
        elif isinstance(segm, dict):
            # RLE
            mask = mask_util.decode(segm)
            mask = transforms.apply_segmentation(mask)
            assert tuple(mask.shape[:2]) == image_size
            annotation["segmentation"] = mask
        else:
            raise ValueError(
                "Cannot transform segmentation of type '{}'!"
                "Supported types are: polygons as list[list[float] or ndarray],"
                " COCO-style RLE as a dict.".format(type(segm))
            )

    if "keypoints" in annotation:
        keypoints = transform_keypoint_annotations(
            annotation["keypoints"], transforms, image_size, keypoint_hflip_indices
        )
        annotation["keypoints"] = keypoints

    return annotation


def transform_keypoint_annotations(keypoints, transforms, image_size, keypoint_hflip_indices=None):
    """

    Transform keypoint annotations of an image.

    If a keypoint is transformed out of image boundary, it will be marked "unlabeled" (visibility=0)



    Args:

        keypoints (list[float]): Nx3 float in Detectron2's Dataset format.

            Each point is represented by (x, y, visibility).

        transforms (TransformList):

        image_size (tuple): the height, width of the transformed image

        keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.

            When `transforms` includes horizontal flip, will use the index

            mapping to flip keypoints.

    """
    # (N*3,) -> (N, 3)
    keypoints = np.asarray(keypoints, dtype="float64").reshape(-1, 3)
    keypoints_xy = transforms.apply_coords(keypoints[:, :2])

    # Set all out-of-boundary points to "unlabeled"
    inside = (keypoints_xy >= np.array([0, 0])) & (keypoints_xy <= np.array(image_size[::-1]))
    inside = inside.all(axis=1)
    keypoints[:, :2] = keypoints_xy
    keypoints[:, 2][~inside] = 0

    # This assumes that HorizFlipTransform is the only one that does flip
    do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1

    # Alternative way: check if probe points was horizontally flipped.
    # probe = np.asarray([[0.0, 0.0], [image_width, 0.0]])
    # probe_aug = transforms.apply_coords(probe.copy())
    # do_hflip = np.sign(probe[1][0] - probe[0][0]) != np.sign(probe_aug[1][0] - probe_aug[0][0])  # noqa

    # If flipped, swap each keypoint with its opposite-handed equivalent
    if do_hflip:
        if keypoint_hflip_indices is None:
            raise ValueError("Cannot flip keypoints without providing flip indices!")
        if len(keypoints) != len(keypoint_hflip_indices):
            raise ValueError(
                "Keypoint data has {} points, but metadata "
                "contains {} points!".format(len(keypoints), len(keypoint_hflip_indices))
            )
        keypoints = keypoints[np.asarray(keypoint_hflip_indices, dtype=np.int32), :]

    # Maintain COCO convention that if visibility == 0 (unlabeled), then x, y = 0
    keypoints[keypoints[:, 2] == 0] = 0
    return keypoints


def annotations_to_instances(annos, image_size, mask_format="polygon"):
    """

    Create an :class:`Instances` object used by the models,

    from instance annotations in the dataset dict.



    Args:

        annos (list[dict]): a list of instance annotations in one image, each

            element for one instance.

        image_size (tuple): height, width



    Returns:

        Instances:

            It will contain fields "gt_boxes", "gt_classes",

            "gt_masks", "gt_keypoints", if they can be obtained from `annos`.

            This is the format that builtin models expect.

    """
    boxes = (
        np.stack(
            [BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos]
        )
        if len(annos)
        else np.zeros((0, 4))
    )
    target = Instances(image_size)
    target.gt_boxes = Boxes(boxes)

    classes = [int(obj["category_id"]) for obj in annos]
    classes = torch.tensor(classes, dtype=torch.int64)
    target.gt_classes = classes

    if len(annos) and "segmentation" in annos[0]:
        segms = [obj["segmentation"] for obj in annos]
        if mask_format == "polygon":
            try:
                masks = PolygonMasks(segms)
            except ValueError as e:
                raise ValueError(
                    "Failed to use mask_format=='polygon' from the given annotations!"
                ) from e
        else:
            assert mask_format == "bitmask", mask_format
            masks = []
            for segm in segms:
                if isinstance(segm, list):
                    # polygon
                    masks.append(polygons_to_bitmask(segm, *image_size))
                elif isinstance(segm, dict):
                    # COCO RLE
                    masks.append(mask_util.decode(segm))
                elif isinstance(segm, np.ndarray):
                    assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format(
                        segm.ndim
                    )
                    # mask array
                    masks.append(segm)
                else:
                    raise ValueError(
                        "Cannot convert segmentation of type '{}' to BitMasks!"
                        "Supported types are: polygons as list[list[float] or ndarray],"
                        " COCO-style RLE as a dict, or a binary segmentation mask "
                        " in a 2D numpy array of shape HxW.".format(type(segm))
                    )
            # torch.from_numpy does not support array with negative stride.
            masks = BitMasks(
                torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks])
            )
        target.gt_masks = masks

    if len(annos) and "keypoints" in annos[0]:
        kpts = [obj.get("keypoints", []) for obj in annos]
        target.gt_keypoints = Keypoints(kpts)

    return target


def annotations_to_instances_rotated(annos, image_size):
    """

    Create an :class:`Instances` object used by the models,

    from instance annotations in the dataset dict.

    Compared to `annotations_to_instances`, this function is for rotated boxes only



    Args:

        annos (list[dict]): a list of instance annotations in one image, each

            element for one instance.

        image_size (tuple): height, width



    Returns:

        Instances:

            Containing fields "gt_boxes", "gt_classes",

            if they can be obtained from `annos`.

            This is the format that builtin models expect.

    """
    boxes = [obj["bbox"] for obj in annos]
    target = Instances(image_size)
    boxes = target.gt_boxes = RotatedBoxes(boxes)
    boxes.clip(image_size)

    classes = [obj["category_id"] for obj in annos]
    classes = torch.tensor(classes, dtype=torch.int64)
    target.gt_classes = classes

    return target


def filter_empty_instances(

    instances, by_box=True, by_mask=True, box_threshold=1e-5, return_mask=False

):
    """

    Filter out empty instances in an `Instances` object.



    Args:

        instances (Instances):

        by_box (bool): whether to filter out instances with empty boxes

        by_mask (bool): whether to filter out instances with empty masks

        box_threshold (float): minimum width and height to be considered non-empty

        return_mask (bool): whether to return boolean mask of filtered instances



    Returns:

        Instances: the filtered instances.

        tensor[bool], optional: boolean mask of filtered instances

    """
    assert by_box or by_mask
    r = []
    if by_box:
        r.append(instances.gt_boxes.nonempty(threshold=box_threshold))
    if instances.has("gt_masks") and by_mask:
        r.append(instances.gt_masks.nonempty())

    # TODO: can also filter visible keypoints

    if not r:
        return instances
    m = r[0]
    for x in r[1:]:
        m = m & x
    if return_mask:
        return instances[m], m
    return instances[m]


def create_keypoint_hflip_indices(dataset_names: Union[str, List[str]]) -> List[int]:
    """

    Args:

        dataset_names: list of dataset names



    Returns:

        list[int]: a list of size=#keypoints, storing the

        horizontally-flipped keypoint indices.

    """
    if isinstance(dataset_names, str):
        dataset_names = [dataset_names]

    check_metadata_consistency("keypoint_names", dataset_names)
    check_metadata_consistency("keypoint_flip_map", dataset_names)

    meta = MetadataCatalog.get(dataset_names[0])
    names = meta.keypoint_names
    # TODO flip -> hflip
    flip_map = dict(meta.keypoint_flip_map)
    flip_map.update({v: k for k, v in flip_map.items()})
    flipped_names = [i if i not in flip_map else flip_map[i] for i in names]
    flip_indices = [names.index(i) for i in flipped_names]
    return flip_indices


def get_fed_loss_cls_weights(dataset_names: Union[str, List[str]], freq_weight_power=1.0):
    """

    Get frequency weight for each class sorted by class id.

    We now calcualte freqency weight using image_count to the power freq_weight_power.



    Args:

        dataset_names: list of dataset names

        freq_weight_power: power value

    """
    if isinstance(dataset_names, str):
        dataset_names = [dataset_names]

    check_metadata_consistency("class_image_count", dataset_names)

    meta = MetadataCatalog.get(dataset_names[0])
    class_freq_meta = meta.class_image_count
    class_freq = torch.tensor(
        [c["image_count"] for c in sorted(class_freq_meta, key=lambda x: x["id"])]
    )
    class_freq_weight = class_freq.float() ** freq_weight_power
    return class_freq_weight


def gen_crop_transform_with_instance(crop_size, image_size, instance):
    """

    Generate a CropTransform so that the cropping region contains

    the center of the given instance.



    Args:

        crop_size (tuple): h, w in pixels

        image_size (tuple): h, w

        instance (dict): an annotation dict of one instance, in Detectron2's

            dataset format.

    """
    crop_size = np.asarray(crop_size, dtype=np.int32)
    bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS)
    center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5
    assert (
        image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1]
    ), "The annotation bounding box is outside of the image!"
    assert (
        image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1]
    ), "Crop size is larger than image size!"

    min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
    max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
    max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))

    y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
    x0 = np.random.randint(min_yx[1], max_yx[1] + 1)
    return T.CropTransform(x0, y0, crop_size[1], crop_size[0])


def check_metadata_consistency(key, dataset_names):
    """

    Check that the datasets have consistent metadata.



    Args:

        key (str): a metadata key

        dataset_names (list[str]): a list of dataset names



    Raises:

        AttributeError: if the key does not exist in the metadata

        ValueError: if the given datasets do not have the same metadata values defined by key

    """
    if len(dataset_names) == 0:
        return
    logger = logging.getLogger(__name__)
    entries_per_dataset = [getattr(MetadataCatalog.get(d), key) for d in dataset_names]
    for idx, entry in enumerate(entries_per_dataset):
        if entry != entries_per_dataset[0]:
            logger.error(
                "Metadata '{}' for dataset '{}' is '{}'".format(key, dataset_names[idx], str(entry))
            )
            logger.error(
                "Metadata '{}' for dataset '{}' is '{}'".format(
                    key, dataset_names[0], str(entries_per_dataset[0])
                )
            )
            raise ValueError("Datasets have different metadata '{}'!".format(key))


def build_augmentation(cfg, is_train):
    """

    Create a list of default :class:`Augmentation` from config.

    Now it includes resizing and flipping.



    Returns:

        list[Augmentation]

    """
    if is_train:
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = cfg.INPUT.MAX_SIZE_TRAIN
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
    else:
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
    augmentation = [T.ResizeShortestEdge(min_size, max_size, sample_style)]
    if is_train and cfg.INPUT.RANDOM_FLIP != "none":
        augmentation.append(
            T.RandomFlip(
                horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal",
                vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
            )
        )
    return augmentation


build_transform_gen = build_augmentation
"""

Alias for backward-compatibility.

"""