File size: 3,135 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

import fvcore.nn.weight_init as weight_init
from torch import nn

from .batch_norm import FrozenBatchNorm2d, get_norm
from .wrappers import Conv2d


"""

CNN building blocks.

"""


class CNNBlockBase(nn.Module):
    """

    A CNN block is assumed to have input channels, output channels and a stride.

    The input and output of `forward()` method must be NCHW tensors.

    The method can perform arbitrary computation but must match the given

    channels and stride specification.



    Attribute:

        in_channels (int):

        out_channels (int):

        stride (int):

    """

    def __init__(self, in_channels, out_channels, stride):
        """

        The `__init__` method of any subclass should also contain these arguments.



        Args:

            in_channels (int):

            out_channels (int):

            stride (int):

        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.stride = stride

    def freeze(self):
        """

        Make this block not trainable.

        This method sets all parameters to `requires_grad=False`,

        and convert all BatchNorm layers to FrozenBatchNorm



        Returns:

            the block itself

        """
        for p in self.parameters():
            p.requires_grad = False
        FrozenBatchNorm2d.convert_frozen_batchnorm(self)
        return self


class DepthwiseSeparableConv2d(nn.Module):
    """

    A kxk depthwise convolution + a 1x1 convolution.



    In :paper:`xception`, norm & activation are applied on the second conv.

    :paper:`mobilenet` uses norm & activation on both convs.

    """

    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size=3,

        padding=1,

        dilation=1,

        *,

        norm1=None,

        activation1=None,

        norm2=None,

        activation2=None,

    ):
        """

        Args:

            norm1, norm2 (str or callable): normalization for the two conv layers.

            activation1, activation2 (callable(Tensor) -> Tensor): activation

                function for the two conv layers.

        """
        super().__init__()
        self.depthwise = Conv2d(
            in_channels,
            in_channels,
            kernel_size=kernel_size,
            padding=padding,
            dilation=dilation,
            groups=in_channels,
            bias=not norm1,
            norm=get_norm(norm1, in_channels),
            activation=activation1,
        )
        self.pointwise = Conv2d(
            in_channels,
            out_channels,
            kernel_size=1,
            bias=not norm2,
            norm=get_norm(norm2, out_channels),
            activation=activation2,
        )

        # default initialization
        weight_init.c2_msra_fill(self.depthwise)
        weight_init.c2_msra_fill(self.pointwise)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))