File size: 17,532 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from functools import lru_cache
import torch
from torch import nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from torchvision.ops import deform_conv2d

from annotator.oneformer.detectron2.utils.develop import create_dummy_class, create_dummy_func

from .wrappers import _NewEmptyTensorOp


class _DeformConv(Function):
    @staticmethod
    def forward(

        ctx,

        input,

        offset,

        weight,

        stride=1,

        padding=0,

        dilation=1,

        groups=1,

        deformable_groups=1,

        im2col_step=64,

    ):
        if input is not None and input.dim() != 4:
            raise ValueError(
                "Expected 4D tensor as input, got {}D tensor instead.".format(input.dim())
            )
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.groups = groups
        ctx.deformable_groups = deformable_groups
        ctx.im2col_step = im2col_step

        ctx.save_for_backward(input, offset, weight)

        output = input.new_empty(
            _DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride)
        )

        ctx.bufs_ = [input.new_empty(0), input.new_empty(0)]  # columns, ones

        if not input.is_cuda:
            # TODO: let torchvision support full features of our deformconv.
            if deformable_groups != 1:
                raise NotImplementedError(
                    "Deformable Conv with deformable_groups != 1 is not supported on CPUs!"
                )
            return deform_conv2d(
                input, offset, weight, stride=stride, padding=padding, dilation=dilation
            )
        else:
            cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step)
            assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize"

            _C.deform_conv_forward(
                input,
                weight,
                offset,
                output,
                ctx.bufs_[0],
                ctx.bufs_[1],
                weight.size(3),
                weight.size(2),
                ctx.stride[1],
                ctx.stride[0],
                ctx.padding[1],
                ctx.padding[0],
                ctx.dilation[1],
                ctx.dilation[0],
                ctx.groups,
                ctx.deformable_groups,
                cur_im2col_step,
            )
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, offset, weight = ctx.saved_tensors

        grad_input = grad_offset = grad_weight = None

        if not grad_output.is_cuda:
            raise NotImplementedError("Deformable Conv is not supported on CPUs!")
        else:
            cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step)
            assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize"

            if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
                grad_input = torch.zeros_like(input)
                grad_offset = torch.zeros_like(offset)
                _C.deform_conv_backward_input(
                    input,
                    offset,
                    grad_output,
                    grad_input,
                    grad_offset,
                    weight,
                    ctx.bufs_[0],
                    weight.size(3),
                    weight.size(2),
                    ctx.stride[1],
                    ctx.stride[0],
                    ctx.padding[1],
                    ctx.padding[0],
                    ctx.dilation[1],
                    ctx.dilation[0],
                    ctx.groups,
                    ctx.deformable_groups,
                    cur_im2col_step,
                )

            if ctx.needs_input_grad[2]:
                grad_weight = torch.zeros_like(weight)
                _C.deform_conv_backward_filter(
                    input,
                    offset,
                    grad_output,
                    grad_weight,
                    ctx.bufs_[0],
                    ctx.bufs_[1],
                    weight.size(3),
                    weight.size(2),
                    ctx.stride[1],
                    ctx.stride[0],
                    ctx.padding[1],
                    ctx.padding[0],
                    ctx.dilation[1],
                    ctx.dilation[0],
                    ctx.groups,
                    ctx.deformable_groups,
                    1,
                    cur_im2col_step,
                )

        return grad_input, grad_offset, grad_weight, None, None, None, None, None, None

    @staticmethod
    def _output_size(input, weight, padding, dilation, stride):
        channels = weight.size(0)
        output_size = (input.size(0), channels)
        for d in range(input.dim() - 2):
            in_size = input.size(d + 2)
            pad = padding[d]
            kernel = dilation[d] * (weight.size(d + 2) - 1) + 1
            stride_ = stride[d]
            output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,)
        if not all(map(lambda s: s > 0, output_size)):
            raise ValueError(
                "convolution input is too small (output would be {})".format(
                    "x".join(map(str, output_size))
                )
            )
        return output_size

    @staticmethod
    @lru_cache(maxsize=128)
    def _cal_im2col_step(input_size, default_size):
        """

        Calculate proper im2col step size, which should be divisible by input_size and not larger

        than prefer_size. Meanwhile the step size should be as large as possible to be more

        efficient. So we choose the largest one among all divisors of input_size which are smaller

        than prefer_size.

        :param input_size: input batch size .

        :param default_size: default preferred im2col step size.

        :return: the largest proper step size.

        """
        if input_size <= default_size:
            return input_size
        best_step = 1
        for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)):
            if input_size % step == 0:
                if input_size // step <= default_size:
                    return input_size // step
                best_step = step

        return best_step


class _ModulatedDeformConv(Function):
    @staticmethod
    def forward(

        ctx,

        input,

        offset,

        mask,

        weight,

        bias=None,

        stride=1,

        padding=0,

        dilation=1,

        groups=1,

        deformable_groups=1,

    ):
        ctx.stride = stride
        ctx.padding = padding
        ctx.dilation = dilation
        ctx.groups = groups
        ctx.deformable_groups = deformable_groups
        ctx.with_bias = bias is not None
        if not ctx.with_bias:
            bias = input.new_empty(1)  # fake tensor
        if not input.is_cuda:
            raise NotImplementedError("Deformable Conv is not supported on CPUs!")
        if (
            weight.requires_grad
            or mask.requires_grad
            or offset.requires_grad
            or input.requires_grad
        ):
            ctx.save_for_backward(input, offset, mask, weight, bias)
        output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight))
        ctx._bufs = [input.new_empty(0), input.new_empty(0)]
        _C.modulated_deform_conv_forward(
            input,
            weight,
            bias,
            ctx._bufs[0],
            offset,
            mask,
            output,
            ctx._bufs[1],
            weight.shape[2],
            weight.shape[3],
            ctx.stride,
            ctx.stride,
            ctx.padding,
            ctx.padding,
            ctx.dilation,
            ctx.dilation,
            ctx.groups,
            ctx.deformable_groups,
            ctx.with_bias,
        )
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        if not grad_output.is_cuda:
            raise NotImplementedError("Deformable Conv is not supported on CPUs!")
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input = torch.zeros_like(input)
        grad_offset = torch.zeros_like(offset)
        grad_mask = torch.zeros_like(mask)
        grad_weight = torch.zeros_like(weight)
        grad_bias = torch.zeros_like(bias)
        _C.modulated_deform_conv_backward(
            input,
            weight,
            bias,
            ctx._bufs[0],
            offset,
            mask,
            ctx._bufs[1],
            grad_input,
            grad_weight,
            grad_bias,
            grad_offset,
            grad_mask,
            grad_output,
            weight.shape[2],
            weight.shape[3],
            ctx.stride,
            ctx.stride,
            ctx.padding,
            ctx.padding,
            ctx.dilation,
            ctx.dilation,
            ctx.groups,
            ctx.deformable_groups,
            ctx.with_bias,
        )
        if not ctx.with_bias:
            grad_bias = None

        return (
            grad_input,
            grad_offset,
            grad_mask,
            grad_weight,
            grad_bias,
            None,
            None,
            None,
            None,
            None,
        )

    @staticmethod
    def _infer_shape(ctx, input, weight):
        n = input.size(0)
        channels_out = weight.size(0)
        height, width = input.shape[2:4]
        kernel_h, kernel_w = weight.shape[2:4]
        height_out = (
            height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1)
        ) // ctx.stride + 1
        width_out = (
            width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1)
        ) // ctx.stride + 1
        return n, channels_out, height_out, width_out


deform_conv = _DeformConv.apply
modulated_deform_conv = _ModulatedDeformConv.apply


class DeformConv(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        groups=1,

        deformable_groups=1,

        bias=False,

        norm=None,

        activation=None,

    ):
        """

        Deformable convolution from :paper:`deformconv`.



        Arguments are similar to :class:`Conv2D`. Extra arguments:



        Args:

            deformable_groups (int): number of groups used in deformable convolution.

            norm (nn.Module, optional): a normalization layer

            activation (callable(Tensor) -> Tensor): a callable activation function

        """
        super(DeformConv, self).__init__()

        assert not bias
        assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format(
            in_channels, groups
        )
        assert (
            out_channels % groups == 0
        ), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.deformable_groups = deformable_groups
        self.norm = norm
        self.activation = activation

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size)
        )
        self.bias = None

        nn.init.kaiming_uniform_(self.weight, nonlinearity="relu")

    def forward(self, x, offset):
        if x.numel() == 0:
            # When input is empty, we want to return a empty tensor with "correct" shape,
            # So that the following operations will not panic
            # if they check for the shape of the tensor.
            # This computes the height and width of the output tensor
            output_shape = [
                (i + 2 * p - (di * (k - 1) + 1)) // s + 1
                for i, p, di, k, s in zip(
                    x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
                )
            ]
            output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
            return _NewEmptyTensorOp.apply(x, output_shape)

        x = deform_conv(
            x,
            offset,
            self.weight,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
            self.deformable_groups,
        )
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x

    def extra_repr(self):
        tmpstr = "in_channels=" + str(self.in_channels)
        tmpstr += ", out_channels=" + str(self.out_channels)
        tmpstr += ", kernel_size=" + str(self.kernel_size)
        tmpstr += ", stride=" + str(self.stride)
        tmpstr += ", padding=" + str(self.padding)
        tmpstr += ", dilation=" + str(self.dilation)
        tmpstr += ", groups=" + str(self.groups)
        tmpstr += ", deformable_groups=" + str(self.deformable_groups)
        tmpstr += ", bias=False"
        return tmpstr


class ModulatedDeformConv(nn.Module):
    def __init__(

        self,

        in_channels,

        out_channels,

        kernel_size,

        stride=1,

        padding=0,

        dilation=1,

        groups=1,

        deformable_groups=1,

        bias=True,

        norm=None,

        activation=None,

    ):
        """

        Modulated deformable convolution from :paper:`deformconv2`.



        Arguments are similar to :class:`Conv2D`. Extra arguments:



        Args:

            deformable_groups (int): number of groups used in deformable convolution.

            norm (nn.Module, optional): a normalization layer

            activation (callable(Tensor) -> Tensor): a callable activation function

        """
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.deformable_groups = deformable_groups
        self.with_bias = bias
        self.norm = norm
        self.activation = activation

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels // groups, *self.kernel_size)
        )
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.bias = None

        nn.init.kaiming_uniform_(self.weight, nonlinearity="relu")
        if self.bias is not None:
            nn.init.constant_(self.bias, 0)

    def forward(self, x, offset, mask):
        if x.numel() == 0:
            output_shape = [
                (i + 2 * p - (di * (k - 1) + 1)) // s + 1
                for i, p, di, k, s in zip(
                    x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
                )
            ]
            output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
            return _NewEmptyTensorOp.apply(x, output_shape)

        x = modulated_deform_conv(
            x,
            offset,
            mask,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
            self.deformable_groups,
        )
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x

    def extra_repr(self):
        tmpstr = "in_channels=" + str(self.in_channels)
        tmpstr += ", out_channels=" + str(self.out_channels)
        tmpstr += ", kernel_size=" + str(self.kernel_size)
        tmpstr += ", stride=" + str(self.stride)
        tmpstr += ", padding=" + str(self.padding)
        tmpstr += ", dilation=" + str(self.dilation)
        tmpstr += ", groups=" + str(self.groups)
        tmpstr += ", deformable_groups=" + str(self.deformable_groups)
        tmpstr += ", bias=" + str(self.with_bias)
        return tmpstr


try:
    from annotator.oneformer.detectron2 import _C
except ImportError:
    # TODO: register ops natively so there is no need to import _C.
    _msg = "detectron2 is not compiled successfully, please build following the instructions!"
    _args = ("detectron2._C", _msg)
    DeformConv = create_dummy_class("DeformConv", *_args)
    ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args)
    deform_conv = create_dummy_func("deform_conv", *_args)
    modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args)