File size: 4,335 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import math
import torch


def diou_loss(

    boxes1: torch.Tensor,

    boxes2: torch.Tensor,

    reduction: str = "none",

    eps: float = 1e-7,

) -> torch.Tensor:
    """

    Distance Intersection over Union Loss (Zhaohui Zheng et. al)

    https://arxiv.org/abs/1911.08287

    Args:

        boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).

        reduction: 'none' | 'mean' | 'sum'

                 'none': No reduction will be applied to the output.

                 'mean': The output will be averaged.

                 'sum': The output will be summed.

        eps (float): small number to prevent division by zero

    """

    x1, y1, x2, y2 = boxes1.unbind(dim=-1)
    x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)

    # TODO: use torch._assert_async() when pytorch 1.8 support is dropped
    assert (x2 >= x1).all(), "bad box: x1 larger than x2"
    assert (y2 >= y1).all(), "bad box: y1 larger than y2"

    # Intersection keypoints
    xkis1 = torch.max(x1, x1g)
    ykis1 = torch.max(y1, y1g)
    xkis2 = torch.min(x2, x2g)
    ykis2 = torch.min(y2, y2g)

    intsct = torch.zeros_like(x1)
    mask = (ykis2 > ykis1) & (xkis2 > xkis1)
    intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
    union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
    iou = intsct / union

    # smallest enclosing box
    xc1 = torch.min(x1, x1g)
    yc1 = torch.min(y1, y1g)
    xc2 = torch.max(x2, x2g)
    yc2 = torch.max(y2, y2g)
    diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps

    # centers of boxes
    x_p = (x2 + x1) / 2
    y_p = (y2 + y1) / 2
    x_g = (x1g + x2g) / 2
    y_g = (y1g + y2g) / 2
    distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)

    # Eqn. (7)
    loss = 1 - iou + (distance / diag_len)
    if reduction == "mean":
        loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
    elif reduction == "sum":
        loss = loss.sum()

    return loss


def ciou_loss(

    boxes1: torch.Tensor,

    boxes2: torch.Tensor,

    reduction: str = "none",

    eps: float = 1e-7,

) -> torch.Tensor:
    """

    Complete Intersection over Union Loss (Zhaohui Zheng et. al)

    https://arxiv.org/abs/1911.08287

    Args:

        boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).

        reduction: 'none' | 'mean' | 'sum'

                 'none': No reduction will be applied to the output.

                 'mean': The output will be averaged.

                 'sum': The output will be summed.

        eps (float): small number to prevent division by zero

    """

    x1, y1, x2, y2 = boxes1.unbind(dim=-1)
    x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)

    # TODO: use torch._assert_async() when pytorch 1.8 support is dropped
    assert (x2 >= x1).all(), "bad box: x1 larger than x2"
    assert (y2 >= y1).all(), "bad box: y1 larger than y2"

    # Intersection keypoints
    xkis1 = torch.max(x1, x1g)
    ykis1 = torch.max(y1, y1g)
    xkis2 = torch.min(x2, x2g)
    ykis2 = torch.min(y2, y2g)

    intsct = torch.zeros_like(x1)
    mask = (ykis2 > ykis1) & (xkis2 > xkis1)
    intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
    union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
    iou = intsct / union

    # smallest enclosing box
    xc1 = torch.min(x1, x1g)
    yc1 = torch.min(y1, y1g)
    xc2 = torch.max(x2, x2g)
    yc2 = torch.max(y2, y2g)
    diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps

    # centers of boxes
    x_p = (x2 + x1) / 2
    y_p = (y2 + y1) / 2
    x_g = (x1g + x2g) / 2
    y_g = (y1g + y2g) / 2
    distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)

    # width and height of boxes
    w_pred = x2 - x1
    h_pred = y2 - y1
    w_gt = x2g - x1g
    h_gt = y2g - y1g
    v = (4 / (math.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
    with torch.no_grad():
        alpha = v / (1 - iou + v + eps)

    # Eqn. (10)
    loss = 1 - iou + (distance / diag_len) + alpha * v
    if reduction == "mean":
        loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
    elif reduction == "sum":
        loss = loss.sum()

    return loss