File size: 3,172 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) Facebook, Inc. and its affiliates.
from torch import nn
from torchvision.ops import roi_align


# NOTE: torchvision's RoIAlign has a different default aligned=False
class ROIAlign(nn.Module):
    def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True):
        """

        Args:

            output_size (tuple): h, w

            spatial_scale (float): scale the input boxes by this number

            sampling_ratio (int): number of inputs samples to take for each output

                sample. 0 to take samples densely.

            aligned (bool): if False, use the legacy implementation in

                Detectron. If True, align the results more perfectly.



        Note:

            The meaning of aligned=True:



            Given a continuous coordinate c, its two neighboring pixel indices (in our

            pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example,

            c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled

            from the underlying signal at continuous coordinates 0.5 and 1.5). But the original

            roi_align (aligned=False) does not subtract the 0.5 when computing neighboring

            pixel indices and therefore it uses pixels with a slightly incorrect alignment

            (relative to our pixel model) when performing bilinear interpolation.



            With `aligned=True`,

            we first appropriately scale the ROI and then shift it by -0.5

            prior to calling roi_align. This produces the correct neighbors; see

            detectron2/tests/test_roi_align.py for verification.



            The difference does not make a difference to the model's performance if

            ROIAlign is used together with conv layers.

        """
        super().__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale
        self.sampling_ratio = sampling_ratio
        self.aligned = aligned

        from torchvision import __version__

        version = tuple(int(x) for x in __version__.split(".")[:2])
        # https://github.com/pytorch/vision/pull/2438
        assert version >= (0, 7), "Require torchvision >= 0.7"

    def forward(self, input, rois):
        """

        Args:

            input: NCHW images

            rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy.

        """
        assert rois.dim() == 2 and rois.size(1) == 5
        if input.is_quantized:
            input = input.dequantize()
        return roi_align(
            input,
            rois.to(dtype=input.dtype),
            self.output_size,
            self.spatial_scale,
            self.sampling_ratio,
            self.aligned,
        )

    def __repr__(self):
        tmpstr = self.__class__.__name__ + "("
        tmpstr += "output_size=" + str(self.output_size)
        tmpstr += ", spatial_scale=" + str(self.spatial_scale)
        tmpstr += ", sampling_ratio=" + str(self.sampling_ratio)
        tmpstr += ", aligned=" + str(self.aligned)
        tmpstr += ")"
        return tmpstr