Spaces:
Running
on
A10G
Running
on
A10G
File size: 2,347 Bytes
eb9a9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
import torch
import numpy as np
from einops import rearrange
from annotator.pidinet.model import pidinet
from annotator.util import safe_step
from annotator.annotator_path import models_path, DEVICE
import safetensors.torch
# from modules.safe import unsafe_torch_load
def get_state_dict(d):
return d.get("state_dict", d)
def load_state_dict(ckpt_path, location="cpu"):
_, extension = os.path.splitext(ckpt_path)
if extension.lower() == ".safetensors":
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
else:
state_dict = torch.load(ckpt_path, map_location=torch.device(location))
state_dict = get_state_dict(state_dict)
return state_dict
netNetwork = None
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth"
modeldir = os.path.join(models_path, "pidinet")
old_modeldir = os.path.dirname(os.path.realpath(__file__))
def apply_pidinet(input_image, is_safe=False, apply_fliter=False):
global netNetwork
if netNetwork is None:
modelpath = os.path.join(modeldir, "table5_pidinet.pth")
old_modelpath = os.path.join(old_modeldir, "table5_pidinet.pth")
if os.path.exists(old_modelpath):
modelpath = old_modelpath
elif not os.path.exists(modelpath):
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(remote_model_path, model_dir=modeldir)
netNetwork = pidinet()
ckp = load_state_dict(modelpath)
netNetwork.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()})
netNetwork = netNetwork.to(DEVICE)
netNetwork.eval()
assert input_image.ndim == 3
input_image = input_image[:, :, ::-1].copy()
with torch.no_grad():
image_pidi = torch.from_numpy(input_image).float().to(DEVICE)
image_pidi = image_pidi / 255.0
image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w')
edge = netNetwork(image_pidi)[-1]
edge = edge.cpu().numpy()
if apply_fliter:
edge = edge > 0.5
if is_safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
return edge[0][0]
def unload_pid_model():
global netNetwork
if netNetwork is not None:
netNetwork.cpu() |