File size: 18,598 Bytes
eb9a9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# --------------------------------------------------------
# UniFormer
# Copyright (c) 2022 SenseTime X-Lab
# Licensed under The MIT License [see LICENSE for details]
# Written by Kunchang Li
# --------------------------------------------------------


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from functools import partial
from collections import OrderedDict
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

try:
    from mmseg.utils import get_root_logger
    from mmseg.models.builder import BACKBONES
except ImportError:
    from annotator.mmpkg.mmseg.utils import get_root_logger
    from annotator.mmpkg.mmseg.models.builder import BACKBONES
    
from annotator.uniformer.mmcv_custom import load_checkpoint


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CMlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class CBlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = nn.BatchNorm2d(dim)
        self.conv1 = nn.Conv2d(dim, dim, 1)
        self.conv2 = nn.Conv2d(dim, dim, 1)
        self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SABlock(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        B, N, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.transpose(1, 2).reshape(B, N, H, W)
        return x   


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size
    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image
    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class SABlock_Windows(nn.Module):
    def __init__(self, dim, num_heads, window_size=14, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.window_size=window_size
        self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.pos_embed(x)
        x = x.permute(0, 2, 3, 1)
        B, H, W, C = x.shape
        shortcut = x
        x = self.norm1(x)

        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        
        x_windows = window_partition(x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C

        # reverse cyclic shift
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        x = x.permute(0, 3, 1, 2).reshape(B, C, H, W)
        return x 
             

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.norm = nn.LayerNorm(embed_dim)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, _, H, W = x.shape
        x = self.proj(x)
        B, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x
    

@BACKBONES.register_module()   
class UniFormer(nn.Module):
    """ Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
        https://arxiv.org/abs/2010.11929
    """
    def __init__(self, layers=[3, 4, 8, 3], img_size=224, in_chans=3, num_classes=80, embed_dim=[64, 128, 320, 512],
                 head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 pretrained_path=None, use_checkpoint=False, checkpoint_num=[0, 0, 0, 0], 
                 windows=False, hybrid=False, window_size=14):
        """
        Args:
            layer (list): number of block in each layer
            img_size (int, tuple): input image size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            head_dim (int): dimension of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer (nn.Module): normalization layer
            pretrained_path (str): path of pretrained model
            use_checkpoint (bool): whether use checkpoint
            checkpoint_num (list): index for using checkpoint in every stage
            windows (bool): whether use window MHRA
            hybrid (bool): whether use hybrid MHRA
            window_size (int): size of window (>14)
        """
        super().__init__()
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.checkpoint_num = checkpoint_num
        self.windows = windows
        print(f'Use Checkpoint: {self.use_checkpoint}')
        print(f'Checkpoint Number: {self.checkpoint_num}')
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) 
        
        self.patch_embed1 = PatchEmbed(
            img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
        self.patch_embed2 = PatchEmbed(
            img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
        self.patch_embed3 = PatchEmbed(
            img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
        self.patch_embed4 = PatchEmbed(
            img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])

        self.pos_drop = nn.Dropout(p=drop_rate)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))]  # stochastic depth decay rule
        num_heads = [dim // head_dim for dim in embed_dim]
        self.blocks1 = nn.ModuleList([
            CBlock(
                dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
            for i in range(layers[0])])
        self.norm1=norm_layer(embed_dim[0])
        self.blocks2 = nn.ModuleList([
            CBlock(
                dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]], norm_layer=norm_layer)
            for i in range(layers[1])])
        self.norm2 = norm_layer(embed_dim[1])
        if self.windows:
            print('Use local window for all blocks in stage3')
            self.blocks3 = nn.ModuleList([
            SABlock_Windows(
                dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)
            for i in range(layers[2])])
        elif hybrid:
            print('Use hybrid window for blocks in stage3')
            block3 = []
            for i in range(layers[2]):
                if (i + 1) % 4 == 0:
                    block3.append(SABlock(
                    dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer))
                else:
                    block3.append(SABlock_Windows(
                    dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                    drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer))
            self.blocks3 = nn.ModuleList(block3)
        else:
            print('Use global window for all blocks in stage3')
            self.blocks3 = nn.ModuleList([
            SABlock(
                dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)
            for i in range(layers[2])])
        self.norm3 = norm_layer(embed_dim[2])
        self.blocks4 = nn.ModuleList([
            SABlock(
                dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]+layers[2]], norm_layer=norm_layer)
            for i in range(layers[3])])
        self.norm4 = norm_layer(embed_dim[3])
        
        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()
        
        self.apply(self._init_weights)
        self.init_weights(pretrained=pretrained_path)
        
    def init_weights(self, pretrained):
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
            print(f'Load pretrained model from {pretrained}')
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        out = []
        x = self.patch_embed1(x)
        x = self.pos_drop(x)
        for i, blk in enumerate(self.blocks1):
            if self.use_checkpoint and i < self.checkpoint_num[0]:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        x_out = self.norm1(x.permute(0, 2, 3, 1))
        out.append(x_out.permute(0, 3, 1, 2).contiguous())
        x = self.patch_embed2(x)
        for i, blk in enumerate(self.blocks2):
            if self.use_checkpoint and i < self.checkpoint_num[1]:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        x_out = self.norm2(x.permute(0, 2, 3, 1))
        out.append(x_out.permute(0, 3, 1, 2).contiguous())
        x = self.patch_embed3(x)
        for i, blk in enumerate(self.blocks3):
            if self.use_checkpoint and i < self.checkpoint_num[2]:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        x_out = self.norm3(x.permute(0, 2, 3, 1))
        out.append(x_out.permute(0, 3, 1, 2).contiguous())
        x = self.patch_embed4(x)
        for i, blk in enumerate(self.blocks4):
            if self.use_checkpoint and i < self.checkpoint_num[3]:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        x_out = self.norm4(x.permute(0, 2, 3, 1))
        out.append(x_out.permute(0, 3, 1, 2).contiguous())
        return tuple(out)

    def forward(self, x):
        x = self.forward_features(x)
        return x