Spaces:
Running
on
A10G
Running
on
A10G
File size: 6,445 Bytes
eb9a9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import cv2
import yaml
import numpy as np
from annotator.lineart import LineartDetector
from annotator.zoe import ZoeDetector
from annotator.manga_line import MangaLineExtration
from annotator.lineart_anime import LineartAnimeDetector
from annotator.hed import apply_hed
from annotator.canny import apply_canny
from annotator.pidinet import apply_pidinet
from annotator.leres import apply_leres
from annotator.midas import apply_midas
def yaml_load(path):
with open(path, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
def yaml_dump(path, data):
with open(path, 'w') as outfile:
yaml.dump(data, outfile, default_flow_style=False)
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
def lineart_standard(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
x = img.astype(np.float32)
g = cv2.GaussianBlur(x, (0, 0), 6.0)
intensity = np.min(g - x, axis=2).clip(0, 255)
intensity /= max(16, np.median(intensity[intensity > 8]))
intensity *= 127
result = intensity.clip(0, 255).astype(np.uint8)
return remove_pad(result), True
def lineart(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart = LineartDetector('sk_model.pth')
# applied auto inversion
result = 255 - model_lineart(img)
return remove_pad(result), True
def lineart_coarse(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart_coarse = LineartDetector('sk_model2.pth')
# applied auto inversion
result = 255 - model_lineart_coarse(img)
return remove_pad(result), True
def lineart_anime(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_lineart_anime = LineartAnimeDetector()
# applied auto inversion
result = 255 - model_lineart_anime(img)
return remove_pad(result), True
def lineart_anime_denoise(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_manga_line = MangaLineExtration()
# applied auto inversion
result = model_manga_line(img)
return remove_pad(result), True
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
l, h = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
model_canny = apply_canny
result = model_canny(img, l, h)
return remove_pad(result), True
def hed(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_hed = apply_hed
result = model_hed(img)
return remove_pad(result), True
def hed_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_hed = apply_hed
result = model_hed(img, is_safe=True)
return remove_pad(result), True
def midas(img, res=512, a=np.pi * 2.0, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_midas = apply_midas
result, _ = model_midas(img, a)
return remove_pad(result), True
def leres(img, res=512, thr_a=0, thr_b=0, boost=False, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def lerespp(img, res=512, thr_a=0, thr_b=0, boost=True, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def pidinet(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img)
return remove_pad(result), True
def pidinet_ts(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img, apply_fliter=True)
return remove_pad(result), True
def pidinet_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_pidinet = apply_pidinet
result = model_pidinet(img, is_safe=True)
return remove_pad(result), True
def zoe_depth(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
model_zoe_depth = ZoeDetector()
result = model_zoe_depth(img)
return remove_pad(result), True
preprocessors_dict = {
'lineart_realistic': lineart,
'lineart_coarse': lineart_coarse,
'lineart_standard': lineart_standard,
'lineart_anime': lineart_anime,
'lineart_anime_denoise': lineart_anime_denoise,
'softedge_hed': hed,
'softedge_hedsafe': hed_safe,
'softedge_pidinet': pidinet,
'softedge_pidsafe': pidinet_safe,
'canny': canny,
'depth_leres': leres,
'depth_leres++': lerespp,
'depth_midas': midas,
'depth_zoe': zoe_depth,
}
def pixel_perfect_process(input_image, p_name):
raw_H, raw_W, _ = input_image.shape
preprocessor_resolution = raw_H
detected_map, _ = preprocessors_dict[p_name](input_image, res=preprocessor_resolution)
return detected_map
|