Spaces:
Running
on
A10G
Running
on
A10G
import numpy as np | |
import cv2 | |
import torch | |
import os | |
from modules import devices | |
from annotator.annotator_path import models_path | |
import mmcv | |
from mmdet.apis import inference_detector, init_detector | |
from mmpose.apis import inference_top_down_pose_model | |
from mmpose.apis import init_pose_model, process_mmdet_results, vis_pose_result | |
def preprocessing(image, device): | |
# Resize | |
scale = 640 / max(image.shape[:2]) | |
image = cv2.resize(image, dsize=None, fx=scale, fy=scale) | |
raw_image = image.astype(np.uint8) | |
# Subtract mean values | |
image = image.astype(np.float32) | |
image -= np.array( | |
[ | |
float(104.008), | |
float(116.669), | |
float(122.675), | |
] | |
) | |
# Convert to torch.Tensor and add "batch" axis | |
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0) | |
image = image.to(device) | |
return image, raw_image | |
def imshow_keypoints(img, | |
pose_result, | |
skeleton=None, | |
kpt_score_thr=0.1, | |
pose_kpt_color=None, | |
pose_link_color=None, | |
radius=4, | |
thickness=1): | |
"""Draw keypoints and links on an image. | |
Args: | |
img (ndarry): The image to draw poses on. | |
pose_result (list[kpts]): The poses to draw. Each element kpts is | |
a set of K keypoints as an Kx3 numpy.ndarray, where each | |
keypoint is represented as x, y, score. | |
kpt_score_thr (float, optional): Minimum score of keypoints | |
to be shown. Default: 0.3. | |
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None, | |
the keypoint will not be drawn. | |
pose_link_color (np.array[Mx3]): Color of M links. If None, the | |
links will not be drawn. | |
thickness (int): Thickness of lines. | |
""" | |
img_h, img_w, _ = img.shape | |
img = np.zeros(img.shape) | |
for idx, kpts in enumerate(pose_result): | |
if idx > 1: | |
continue | |
kpts = kpts['keypoints'] | |
# print(kpts) | |
kpts = np.array(kpts, copy=False) | |
# draw each point on image | |
if pose_kpt_color is not None: | |
assert len(pose_kpt_color) == len(kpts) | |
for kid, kpt in enumerate(kpts): | |
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2] | |
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None: | |
# skip the point that should not be drawn | |
continue | |
color = tuple(int(c) for c in pose_kpt_color[kid]) | |
cv2.circle(img, (int(x_coord), int(y_coord)), | |
radius, color, -1) | |
# draw links | |
if skeleton is not None and pose_link_color is not None: | |
assert len(pose_link_color) == len(skeleton) | |
for sk_id, sk in enumerate(skeleton): | |
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1])) | |
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1])) | |
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0 | |
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr | |
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None): | |
# skip the link that should not be drawn | |
continue | |
color = tuple(int(c) for c in pose_link_color[sk_id]) | |
cv2.line(img, pos1, pos2, color, thickness=thickness) | |
return img | |
human_det, pose_model = None, None | |
det_model_path = "https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth" | |
pose_model_path = "https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth" | |
modeldir = os.path.join(models_path, "keypose") | |
old_modeldir = os.path.dirname(os.path.realpath(__file__)) | |
det_config = 'faster_rcnn_r50_fpn_coco.py' | |
pose_config = 'hrnet_w48_coco_256x192.py' | |
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
det_cat_id = 1 | |
bbox_thr = 0.2 | |
skeleton = [ | |
[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], | |
[7, 9], [8, 10], | |
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6] | |
] | |
pose_kpt_color = [ | |
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], | |
[0, 255, 0], | |
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], | |
[255, 128, 0], | |
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0] | |
] | |
pose_link_color = [ | |
[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0], | |
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0], | |
[255, 128, 0], | |
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255], | |
[51, 153, 255], | |
[51, 153, 255], [51, 153, 255], [51, 153, 255] | |
] | |
def find_download_model(checkpoint, remote_path): | |
modelpath = os.path.join(modeldir, checkpoint) | |
old_modelpath = os.path.join(old_modeldir, checkpoint) | |
if os.path.exists(old_modelpath): | |
modelpath = old_modelpath | |
elif not os.path.exists(modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_path, model_dir=modeldir) | |
return modelpath | |
def apply_keypose(input_image): | |
global human_det, pose_model | |
if netNetwork is None: | |
det_model_local = find_download_model(det_checkpoint, det_model_path) | |
hrnet_model_local = find_download_model(pose_checkpoint, pose_model_path) | |
det_config_mmcv = mmcv.Config.fromfile(det_config) | |
pose_config_mmcv = mmcv.Config.fromfile(pose_config) | |
human_det = init_detector(det_config_mmcv, det_model_local, device=devices.get_device_for("controlnet")) | |
pose_model = init_pose_model(pose_config_mmcv, hrnet_model_local, device=devices.get_device_for("controlnet")) | |
assert input_image.ndim == 3 | |
input_image = input_image.copy() | |
with torch.no_grad(): | |
image = torch.from_numpy(input_image).float().to(devices.get_device_for("controlnet")) | |
image = image / 255.0 | |
mmdet_results = inference_detector(human_det, image) | |
# keep the person class bounding boxes. | |
person_results = process_mmdet_results(mmdet_results, det_cat_id) | |
return_heatmap = False | |
dataset = pose_model.cfg.data['test']['type'] | |
# e.g. use ('backbone', ) to return backbone feature | |
output_layer_names = None | |
pose_results, _ = inference_top_down_pose_model( | |
pose_model, | |
image, | |
person_results, | |
bbox_thr=bbox_thr, | |
format='xyxy', | |
dataset=dataset, | |
dataset_info=None, | |
return_heatmap=return_heatmap, | |
outputs=output_layer_names | |
) | |
im_keypose_out = imshow_keypoints( | |
image, | |
pose_results, | |
skeleton=skeleton, | |
pose_kpt_color=pose_kpt_color, | |
pose_link_color=pose_link_color, | |
radius=2, | |
thickness=2 | |
) | |
im_keypose_out = im_keypose_out.astype(np.uint8) | |
# image_hed = rearrange(image_hed, 'h w c -> 1 c h w') | |
# edge = netNetwork(image_hed)[0] | |
# edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8) | |
return im_keypose_out | |
def unload_hed_model(): | |
global netNetwork | |
if netNetwork is not None: | |
netNetwork.cpu() | |