Spaces:
Running
on
A10G
Running
on
A10G
# _base_ = [ | |
# '../../../../_base_/default_runtime.py', | |
# '../../../../_base_/datasets/coco.py' | |
# ] | |
evaluation = dict(interval=10, metric='mAP', save_best='AP') | |
optimizer = dict( | |
type='Adam', | |
lr=5e-4, | |
) | |
optimizer_config = dict(grad_clip=None) | |
# learning policy | |
lr_config = dict( | |
policy='step', | |
warmup='linear', | |
warmup_iters=500, | |
warmup_ratio=0.001, | |
step=[170, 200]) | |
total_epochs = 210 | |
channel_cfg = dict( | |
num_output_channels=17, | |
dataset_joints=17, | |
dataset_channel=[ | |
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]) | |
# model settings | |
model = dict( | |
type='TopDown', | |
pretrained='https://download.openmmlab.com/mmpose/' | |
'pretrain_models/hrnet_w48-8ef0771d.pth', | |
backbone=dict( | |
type='HRNet', | |
in_channels=3, | |
extra=dict( | |
stage1=dict( | |
num_modules=1, | |
num_branches=1, | |
block='BOTTLENECK', | |
num_blocks=(4, ), | |
num_channels=(64, )), | |
stage2=dict( | |
num_modules=1, | |
num_branches=2, | |
block='BASIC', | |
num_blocks=(4, 4), | |
num_channels=(48, 96)), | |
stage3=dict( | |
num_modules=4, | |
num_branches=3, | |
block='BASIC', | |
num_blocks=(4, 4, 4), | |
num_channels=(48, 96, 192)), | |
stage4=dict( | |
num_modules=3, | |
num_branches=4, | |
block='BASIC', | |
num_blocks=(4, 4, 4, 4), | |
num_channels=(48, 96, 192, 384))), | |
), | |
keypoint_head=dict( | |
type='TopdownHeatmapSimpleHead', | |
in_channels=48, | |
out_channels=channel_cfg['num_output_channels'], | |
num_deconv_layers=0, | |
extra=dict(final_conv_kernel=1, ), | |
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), | |
train_cfg=dict(), | |
test_cfg=dict( | |
flip_test=True, | |
post_process='default', | |
shift_heatmap=True, | |
modulate_kernel=11)) | |
data_cfg = dict( | |
image_size=[192, 256], | |
heatmap_size=[48, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel'], | |
soft_nms=False, | |
nms_thr=1.0, | |
oks_thr=0.9, | |
vis_thr=0.2, | |
use_gt_bbox=False, | |
det_bbox_thr=0.0, | |
bbox_file='data/coco/person_detection_results/' | |
'COCO_val2017_detections_AP_H_56_person.json', | |
) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownGetBboxCenterScale', padding=1.25), | |
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3), | |
dict(type='TopDownRandomFlip', flip_prob=0.5), | |
dict( | |
type='TopDownHalfBodyTransform', | |
num_joints_half_body=8, | |
prob_half_body=0.3), | |
dict( | |
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict(type='TopDownGenerateTarget', sigma=2), | |
dict( | |
type='Collect', | |
keys=['img', 'target', 'target_weight'], | |
meta_keys=[ | |
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | |
'rotation', 'bbox_score', 'flip_pairs' | |
]), | |
] | |
val_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownGetBboxCenterScale', padding=1.25), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
'flip_pairs' | |
]), | |
] | |
test_pipeline = val_pipeline | |
data_root = 'data/coco' | |
data = dict( | |
samples_per_gpu=32, | |
workers_per_gpu=2, | |
val_dataloader=dict(samples_per_gpu=32), | |
test_dataloader=dict(samples_per_gpu=32), | |
train=dict( | |
type='TopDownCocoDataset', | |
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', | |
img_prefix=f'{data_root}/train2017/', | |
data_cfg=data_cfg, | |
pipeline=train_pipeline, | |
dataset_info={{_base_.dataset_info}}), | |
val=dict( | |
type='TopDownCocoDataset', | |
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | |
img_prefix=f'{data_root}/val2017/', | |
data_cfg=data_cfg, | |
pipeline=val_pipeline, | |
dataset_info={{_base_.dataset_info}}), | |
test=dict( | |
type='TopDownCocoDataset', | |
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | |
img_prefix=f'{data_root}/val2017/', | |
data_cfg=data_cfg, | |
pipeline=test_pipeline, | |
dataset_info={{_base_.dataset_info}}), | |
) | |