RAVE / annotator /midas /__init__.py
ozgurkara's picture
first commit
eb9a9b4
import cv2
import numpy as np
import torch
from einops import rearrange
from .api import MiDaSInference
from annotator.annotator_path import DEVICE
model = None
def unload_midas_model():
global model
if model is not None:
model = model.cpu()
def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1):
global model
if model is None:
model = MiDaSInference(model_type="dpt_hybrid")
if DEVICE.type != 'mps':
model = model.to(DEVICE)
assert input_image.ndim == 3
image_depth = input_image
with torch.no_grad():
image_depth = torch.from_numpy(image_depth).float()
if DEVICE.type != 'mps':
image_depth = image_depth.to(DEVICE)
image_depth = image_depth / 127.5 - 1.0
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
depth = model(image_depth)[0]
depth_pt = depth.clone()
depth_pt -= torch.min(depth_pt)
depth_pt /= torch.max(depth_pt)
depth_pt = depth_pt.cpu().numpy()
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
depth_np = depth.cpu().numpy()
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
z = np.ones_like(x) * a
x[depth_pt < bg_th] = 0
y[depth_pt < bg_th] = 0
normal = np.stack([x, y, z], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
return depth_image, normal_image