Spaces:
Running
on
A10G
Running
on
A10G
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
import torch | |
from annotator.oneformer.detectron2.config import get_cfg | |
from annotator.oneformer.detectron2.projects.deeplab import add_deeplab_config | |
from annotator.oneformer.detectron2.data import MetadataCatalog | |
from annotator.oneformer.oneformer import ( | |
add_oneformer_config, | |
add_common_config, | |
add_swin_config, | |
add_dinat_config, | |
) | |
from annotator.oneformer.oneformer.demo.defaults import DefaultPredictor | |
from annotator.oneformer.oneformer.demo.visualizer import Visualizer, ColorMode | |
def make_detectron2_model(config_path, ckpt_path): | |
cfg = get_cfg() | |
add_deeplab_config(cfg) | |
add_common_config(cfg) | |
add_swin_config(cfg) | |
add_oneformer_config(cfg) | |
add_dinat_config(cfg) | |
cfg.merge_from_file(config_path) | |
cfg.MODEL.WEIGHTS = ckpt_path | |
cfg.freeze() | |
metadata = MetadataCatalog.get(cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused") | |
return DefaultPredictor(cfg), metadata | |
def semantic_run(img, predictor, metadata): | |
predictions = predictor(img[:, :, ::-1], "semantic") # Predictor of OneFormer must use BGR image !!! | |
visualizer_map = Visualizer(img, is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE) | |
out_map = visualizer_map.draw_sem_seg(predictions["sem_seg"].argmax(dim=0).cpu(), alpha=1, is_text=False).get_image() | |
return out_map | |