Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
import contextlib | |
import copy | |
import io | |
import itertools | |
import json | |
import logging | |
import numpy as np | |
import os | |
import pickle | |
from collections import OrderedDict | |
import annotator.oneformer.pycocotools.mask as mask_util | |
import torch | |
from annotator.oneformer.pycocotools.coco import COCO | |
from annotator.oneformer.pycocotools.cocoeval import COCOeval | |
from tabulate import tabulate | |
import annotator.oneformer.detectron2.utils.comm as comm | |
from annotator.oneformer.detectron2.config import CfgNode | |
from annotator.oneformer.detectron2.data import MetadataCatalog | |
from annotator.oneformer.detectron2.data.datasets.coco import convert_to_coco_json | |
from annotator.oneformer.detectron2.structures import Boxes, BoxMode, pairwise_iou | |
from annotator.oneformer.detectron2.utils.file_io import PathManager | |
from annotator.oneformer.detectron2.utils.logger import create_small_table | |
from .evaluator import DatasetEvaluator | |
try: | |
from annotator.oneformer.detectron2.evaluation.fast_eval_api import COCOeval_opt | |
except ImportError: | |
COCOeval_opt = COCOeval | |
class COCOEvaluator(DatasetEvaluator): | |
""" | |
Evaluate AR for object proposals, AP for instance detection/segmentation, AP | |
for keypoint detection outputs using COCO's metrics. | |
See http://cocodataset.org/#detection-eval and | |
http://cocodataset.org/#keypoints-eval to understand its metrics. | |
The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means | |
the metric cannot be computed (e.g. due to no predictions made). | |
In addition to COCO, this evaluator is able to support any bounding box detection, | |
instance segmentation, or keypoint detection dataset. | |
""" | |
def __init__( | |
self, | |
dataset_name, | |
tasks=None, | |
distributed=True, | |
output_dir=None, | |
*, | |
max_dets_per_image=None, | |
use_fast_impl=True, | |
kpt_oks_sigmas=(), | |
allow_cached_coco=True, | |
): | |
""" | |
Args: | |
dataset_name (str): name of the dataset to be evaluated. | |
It must have either the following corresponding metadata: | |
"json_file": the path to the COCO format annotation | |
Or it must be in detectron2's standard dataset format | |
so it can be converted to COCO format automatically. | |
tasks (tuple[str]): tasks that can be evaluated under the given | |
configuration. A task is one of "bbox", "segm", "keypoints". | |
By default, will infer this automatically from predictions. | |
distributed (True): if True, will collect results from all ranks and run evaluation | |
in the main process. | |
Otherwise, will only evaluate the results in the current process. | |
output_dir (str): optional, an output directory to dump all | |
results predicted on the dataset. The dump contains two files: | |
1. "instances_predictions.pth" a file that can be loaded with `torch.load` and | |
contains all the results in the format they are produced by the model. | |
2. "coco_instances_results.json" a json file in COCO's result format. | |
max_dets_per_image (int): limit on the maximum number of detections per image. | |
By default in COCO, this limit is to 100, but this can be customized | |
to be greater, as is needed in evaluation metrics AP fixed and AP pool | |
(see https://arxiv.org/pdf/2102.01066.pdf) | |
This doesn't affect keypoint evaluation. | |
use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. | |
Although the results should be very close to the official implementation in COCO | |
API, it is still recommended to compute results with the official API for use in | |
papers. The faster implementation also uses more RAM. | |
kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. | |
See http://cocodataset.org/#keypoints-eval | |
When empty, it will use the defaults in COCO. | |
Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. | |
allow_cached_coco (bool): Whether to use cached coco json from previous validation | |
runs. You should set this to False if you need to use different validation data. | |
Defaults to True. | |
""" | |
self._logger = logging.getLogger(__name__) | |
self._distributed = distributed | |
self._output_dir = output_dir | |
if use_fast_impl and (COCOeval_opt is COCOeval): | |
self._logger.info("Fast COCO eval is not built. Falling back to official COCO eval.") | |
use_fast_impl = False | |
self._use_fast_impl = use_fast_impl | |
# COCOeval requires the limit on the number of detections per image (maxDets) to be a list | |
# with at least 3 elements. The default maxDets in COCOeval is [1, 10, 100], in which the | |
# 3rd element (100) is used as the limit on the number of detections per image when | |
# evaluating AP. COCOEvaluator expects an integer for max_dets_per_image, so for COCOeval, | |
# we reformat max_dets_per_image into [1, 10, max_dets_per_image], based on the defaults. | |
if max_dets_per_image is None: | |
max_dets_per_image = [1, 10, 100] | |
else: | |
max_dets_per_image = [1, 10, max_dets_per_image] | |
self._max_dets_per_image = max_dets_per_image | |
if tasks is not None and isinstance(tasks, CfgNode): | |
kpt_oks_sigmas = ( | |
tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas | |
) | |
self._logger.warn( | |
"COCO Evaluator instantiated using config, this is deprecated behavior." | |
" Please pass in explicit arguments instead." | |
) | |
self._tasks = None # Infering it from predictions should be better | |
else: | |
self._tasks = tasks | |
self._cpu_device = torch.device("cpu") | |
self._metadata = MetadataCatalog.get(dataset_name) | |
if not hasattr(self._metadata, "json_file"): | |
if output_dir is None: | |
raise ValueError( | |
"output_dir must be provided to COCOEvaluator " | |
"for datasets not in COCO format." | |
) | |
self._logger.info(f"Trying to convert '{dataset_name}' to COCO format ...") | |
cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") | |
self._metadata.json_file = cache_path | |
convert_to_coco_json(dataset_name, cache_path, allow_cached=allow_cached_coco) | |
json_file = PathManager.get_local_path(self._metadata.json_file) | |
with contextlib.redirect_stdout(io.StringIO()): | |
self._coco_api = COCO(json_file) | |
# Test set json files do not contain annotations (evaluation must be | |
# performed using the COCO evaluation server). | |
self._do_evaluation = "annotations" in self._coco_api.dataset | |
if self._do_evaluation: | |
self._kpt_oks_sigmas = kpt_oks_sigmas | |
def reset(self): | |
self._predictions = [] | |
def process(self, inputs, outputs): | |
""" | |
Args: | |
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). | |
It is a list of dict. Each dict corresponds to an image and | |
contains keys like "height", "width", "file_name", "image_id". | |
outputs: the outputs of a COCO model. It is a list of dicts with key | |
"instances" that contains :class:`Instances`. | |
""" | |
for input, output in zip(inputs, outputs): | |
prediction = {"image_id": input["image_id"]} | |
if "instances" in output: | |
instances = output["instances"].to(self._cpu_device) | |
prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) | |
if "proposals" in output: | |
prediction["proposals"] = output["proposals"].to(self._cpu_device) | |
if len(prediction) > 1: | |
self._predictions.append(prediction) | |
def evaluate(self, img_ids=None): | |
""" | |
Args: | |
img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset | |
""" | |
if self._distributed: | |
comm.synchronize() | |
predictions = comm.gather(self._predictions, dst=0) | |
predictions = list(itertools.chain(*predictions)) | |
if not comm.is_main_process(): | |
return {} | |
else: | |
predictions = self._predictions | |
if len(predictions) == 0: | |
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") | |
return {} | |
if self._output_dir: | |
PathManager.mkdirs(self._output_dir) | |
file_path = os.path.join(self._output_dir, "instances_predictions.pth") | |
with PathManager.open(file_path, "wb") as f: | |
torch.save(predictions, f) | |
self._results = OrderedDict() | |
if "proposals" in predictions[0]: | |
self._eval_box_proposals(predictions) | |
if "instances" in predictions[0]: | |
self._eval_predictions(predictions, img_ids=img_ids) | |
# Copy so the caller can do whatever with results | |
return copy.deepcopy(self._results) | |
def _tasks_from_predictions(self, predictions): | |
""" | |
Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. | |
""" | |
tasks = {"bbox"} | |
for pred in predictions: | |
if "segmentation" in pred: | |
tasks.add("segm") | |
if "keypoints" in pred: | |
tasks.add("keypoints") | |
return sorted(tasks) | |
def _eval_predictions(self, predictions, img_ids=None): | |
""" | |
Evaluate predictions. Fill self._results with the metrics of the tasks. | |
""" | |
self._logger.info("Preparing results for COCO format ...") | |
coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) | |
tasks = self._tasks or self._tasks_from_predictions(coco_results) | |
# unmap the category ids for COCO | |
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): | |
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id | |
all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) | |
num_classes = len(all_contiguous_ids) | |
assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 | |
reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} | |
for result in coco_results: | |
category_id = result["category_id"] | |
assert category_id < num_classes, ( | |
f"A prediction has class={category_id}, " | |
f"but the dataset only has {num_classes} classes and " | |
f"predicted class id should be in [0, {num_classes - 1}]." | |
) | |
result["category_id"] = reverse_id_mapping[category_id] | |
if self._output_dir: | |
file_path = os.path.join(self._output_dir, "coco_instances_results.json") | |
self._logger.info("Saving results to {}".format(file_path)) | |
with PathManager.open(file_path, "w") as f: | |
f.write(json.dumps(coco_results)) | |
f.flush() | |
if not self._do_evaluation: | |
self._logger.info("Annotations are not available for evaluation.") | |
return | |
self._logger.info( | |
"Evaluating predictions with {} COCO API...".format( | |
"unofficial" if self._use_fast_impl else "official" | |
) | |
) | |
for task in sorted(tasks): | |
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" | |
coco_eval = ( | |
_evaluate_predictions_on_coco( | |
self._coco_api, | |
coco_results, | |
task, | |
kpt_oks_sigmas=self._kpt_oks_sigmas, | |
cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval, | |
img_ids=img_ids, | |
max_dets_per_image=self._max_dets_per_image, | |
) | |
if len(coco_results) > 0 | |
else None # cocoapi does not handle empty results very well | |
) | |
res = self._derive_coco_results( | |
coco_eval, task, class_names=self._metadata.get("thing_classes") | |
) | |
self._results[task] = res | |
def _eval_box_proposals(self, predictions): | |
""" | |
Evaluate the box proposals in predictions. | |
Fill self._results with the metrics for "box_proposals" task. | |
""" | |
if self._output_dir: | |
# Saving generated box proposals to file. | |
# Predicted box_proposals are in XYXY_ABS mode. | |
bbox_mode = BoxMode.XYXY_ABS.value | |
ids, boxes, objectness_logits = [], [], [] | |
for prediction in predictions: | |
ids.append(prediction["image_id"]) | |
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) | |
objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) | |
proposal_data = { | |
"boxes": boxes, | |
"objectness_logits": objectness_logits, | |
"ids": ids, | |
"bbox_mode": bbox_mode, | |
} | |
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: | |
pickle.dump(proposal_data, f) | |
if not self._do_evaluation: | |
self._logger.info("Annotations are not available for evaluation.") | |
return | |
self._logger.info("Evaluating bbox proposals ...") | |
res = {} | |
areas = {"all": "", "small": "s", "medium": "m", "large": "l"} | |
for limit in [100, 1000]: | |
for area, suffix in areas.items(): | |
stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) | |
key = "AR{}@{:d}".format(suffix, limit) | |
res[key] = float(stats["ar"].item() * 100) | |
self._logger.info("Proposal metrics: \n" + create_small_table(res)) | |
self._results["box_proposals"] = res | |
def _derive_coco_results(self, coco_eval, iou_type, class_names=None): | |
""" | |
Derive the desired score numbers from summarized COCOeval. | |
Args: | |
coco_eval (None or COCOEval): None represents no predictions from model. | |
iou_type (str): | |
class_names (None or list[str]): if provided, will use it to predict | |
per-category AP. | |
Returns: | |
a dict of {metric name: score} | |
""" | |
metrics = { | |
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], | |
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], | |
"keypoints": ["AP", "AP50", "AP75", "APm", "APl"], | |
}[iou_type] | |
if coco_eval is None: | |
self._logger.warn("No predictions from the model!") | |
return {metric: float("nan") for metric in metrics} | |
# the standard metrics | |
results = { | |
metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") | |
for idx, metric in enumerate(metrics) | |
} | |
self._logger.info( | |
"Evaluation results for {}: \n".format(iou_type) + create_small_table(results) | |
) | |
if not np.isfinite(sum(results.values())): | |
self._logger.info("Some metrics cannot be computed and is shown as NaN.") | |
if class_names is None or len(class_names) <= 1: | |
return results | |
# Compute per-category AP | |
# from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa | |
precisions = coco_eval.eval["precision"] | |
# precision has dims (iou, recall, cls, area range, max dets) | |
assert len(class_names) == precisions.shape[2] | |
results_per_category = [] | |
for idx, name in enumerate(class_names): | |
# area range index 0: all area ranges | |
# max dets index -1: typically 100 per image | |
precision = precisions[:, :, idx, 0, -1] | |
precision = precision[precision > -1] | |
ap = np.mean(precision) if precision.size else float("nan") | |
results_per_category.append(("{}".format(name), float(ap * 100))) | |
# tabulate it | |
N_COLS = min(6, len(results_per_category) * 2) | |
results_flatten = list(itertools.chain(*results_per_category)) | |
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) | |
table = tabulate( | |
results_2d, | |
tablefmt="pipe", | |
floatfmt=".3f", | |
headers=["category", "AP"] * (N_COLS // 2), | |
numalign="left", | |
) | |
self._logger.info("Per-category {} AP: \n".format(iou_type) + table) | |
results.update({"AP-" + name: ap for name, ap in results_per_category}) | |
return results | |
def instances_to_coco_json(instances, img_id): | |
""" | |
Dump an "Instances" object to a COCO-format json that's used for evaluation. | |
Args: | |
instances (Instances): | |
img_id (int): the image id | |
Returns: | |
list[dict]: list of json annotations in COCO format. | |
""" | |
num_instance = len(instances) | |
if num_instance == 0: | |
return [] | |
boxes = instances.pred_boxes.tensor.numpy() | |
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
boxes = boxes.tolist() | |
scores = instances.scores.tolist() | |
classes = instances.pred_classes.tolist() | |
has_mask = instances.has("pred_masks") | |
if has_mask: | |
# use RLE to encode the masks, because they are too large and takes memory | |
# since this evaluator stores outputs of the entire dataset | |
rles = [ | |
mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] | |
for mask in instances.pred_masks | |
] | |
for rle in rles: | |
# "counts" is an array encoded by mask_util as a byte-stream. Python3's | |
# json writer which always produces strings cannot serialize a bytestream | |
# unless you decode it. Thankfully, utf-8 works out (which is also what | |
# the annotator.oneformer.pycocotools/_mask.pyx does). | |
rle["counts"] = rle["counts"].decode("utf-8") | |
has_keypoints = instances.has("pred_keypoints") | |
if has_keypoints: | |
keypoints = instances.pred_keypoints | |
results = [] | |
for k in range(num_instance): | |
result = { | |
"image_id": img_id, | |
"category_id": classes[k], | |
"bbox": boxes[k], | |
"score": scores[k], | |
} | |
if has_mask: | |
result["segmentation"] = rles[k] | |
if has_keypoints: | |
# In COCO annotations, | |
# keypoints coordinates are pixel indices. | |
# However our predictions are floating point coordinates. | |
# Therefore we subtract 0.5 to be consistent with the annotation format. | |
# This is the inverse of data loading logic in `datasets/coco.py`. | |
keypoints[k][:, :2] -= 0.5 | |
result["keypoints"] = keypoints[k].flatten().tolist() | |
results.append(result) | |
return results | |
# inspired from Detectron: | |
# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa | |
def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): | |
""" | |
Evaluate detection proposal recall metrics. This function is a much | |
faster alternative to the official COCO API recall evaluation code. However, | |
it produces slightly different results. | |
""" | |
# Record max overlap value for each gt box | |
# Return vector of overlap values | |
areas = { | |
"all": 0, | |
"small": 1, | |
"medium": 2, | |
"large": 3, | |
"96-128": 4, | |
"128-256": 5, | |
"256-512": 6, | |
"512-inf": 7, | |
} | |
area_ranges = [ | |
[0**2, 1e5**2], # all | |
[0**2, 32**2], # small | |
[32**2, 96**2], # medium | |
[96**2, 1e5**2], # large | |
[96**2, 128**2], # 96-128 | |
[128**2, 256**2], # 128-256 | |
[256**2, 512**2], # 256-512 | |
[512**2, 1e5**2], | |
] # 512-inf | |
assert area in areas, "Unknown area range: {}".format(area) | |
area_range = area_ranges[areas[area]] | |
gt_overlaps = [] | |
num_pos = 0 | |
for prediction_dict in dataset_predictions: | |
predictions = prediction_dict["proposals"] | |
# sort predictions in descending order | |
# TODO maybe remove this and make it explicit in the documentation | |
inds = predictions.objectness_logits.sort(descending=True)[1] | |
predictions = predictions[inds] | |
ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) | |
anno = coco_api.loadAnns(ann_ids) | |
gt_boxes = [ | |
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) | |
for obj in anno | |
if obj["iscrowd"] == 0 | |
] | |
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes | |
gt_boxes = Boxes(gt_boxes) | |
gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) | |
if len(gt_boxes) == 0 or len(predictions) == 0: | |
continue | |
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) | |
gt_boxes = gt_boxes[valid_gt_inds] | |
num_pos += len(gt_boxes) | |
if len(gt_boxes) == 0: | |
continue | |
if limit is not None and len(predictions) > limit: | |
predictions = predictions[:limit] | |
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) | |
_gt_overlaps = torch.zeros(len(gt_boxes)) | |
for j in range(min(len(predictions), len(gt_boxes))): | |
# find which proposal box maximally covers each gt box | |
# and get the iou amount of coverage for each gt box | |
max_overlaps, argmax_overlaps = overlaps.max(dim=0) | |
# find which gt box is 'best' covered (i.e. 'best' = most iou) | |
gt_ovr, gt_ind = max_overlaps.max(dim=0) | |
assert gt_ovr >= 0 | |
# find the proposal box that covers the best covered gt box | |
box_ind = argmax_overlaps[gt_ind] | |
# record the iou coverage of this gt box | |
_gt_overlaps[j] = overlaps[box_ind, gt_ind] | |
assert _gt_overlaps[j] == gt_ovr | |
# mark the proposal box and the gt box as used | |
overlaps[box_ind, :] = -1 | |
overlaps[:, gt_ind] = -1 | |
# append recorded iou coverage level | |
gt_overlaps.append(_gt_overlaps) | |
gt_overlaps = ( | |
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) | |
) | |
gt_overlaps, _ = torch.sort(gt_overlaps) | |
if thresholds is None: | |
step = 0.05 | |
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) | |
recalls = torch.zeros_like(thresholds) | |
# compute recall for each iou threshold | |
for i, t in enumerate(thresholds): | |
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) | |
# ar = 2 * np.trapz(recalls, thresholds) | |
ar = recalls.mean() | |
return { | |
"ar": ar, | |
"recalls": recalls, | |
"thresholds": thresholds, | |
"gt_overlaps": gt_overlaps, | |
"num_pos": num_pos, | |
} | |
def _evaluate_predictions_on_coco( | |
coco_gt, | |
coco_results, | |
iou_type, | |
kpt_oks_sigmas=None, | |
cocoeval_fn=COCOeval_opt, | |
img_ids=None, | |
max_dets_per_image=None, | |
): | |
""" | |
Evaluate the coco results using COCOEval API. | |
""" | |
assert len(coco_results) > 0 | |
if iou_type == "segm": | |
coco_results = copy.deepcopy(coco_results) | |
# When evaluating mask AP, if the results contain bbox, cocoapi will | |
# use the box area as the area of the instance, instead of the mask area. | |
# This leads to a different definition of small/medium/large. | |
# We remove the bbox field to let mask AP use mask area. | |
for c in coco_results: | |
c.pop("bbox", None) | |
coco_dt = coco_gt.loadRes(coco_results) | |
coco_eval = cocoeval_fn(coco_gt, coco_dt, iou_type) | |
# For COCO, the default max_dets_per_image is [1, 10, 100]. | |
if max_dets_per_image is None: | |
max_dets_per_image = [1, 10, 100] # Default from COCOEval | |
else: | |
assert ( | |
len(max_dets_per_image) >= 3 | |
), "COCOeval requires maxDets (and max_dets_per_image) to have length at least 3" | |
# In the case that user supplies a custom input for max_dets_per_image, | |
# apply COCOevalMaxDets to evaluate AP with the custom input. | |
if max_dets_per_image[2] != 100: | |
coco_eval = COCOevalMaxDets(coco_gt, coco_dt, iou_type) | |
if iou_type != "keypoints": | |
coco_eval.params.maxDets = max_dets_per_image | |
if img_ids is not None: | |
coco_eval.params.imgIds = img_ids | |
if iou_type == "keypoints": | |
# Use the COCO default keypoint OKS sigmas unless overrides are specified | |
if kpt_oks_sigmas: | |
assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "annotator.oneformer.pycocotools is too old!" | |
coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) | |
# COCOAPI requires every detection and every gt to have keypoints, so | |
# we just take the first entry from both | |
num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 | |
num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 | |
num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) | |
assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( | |
f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " | |
f"Ground truth contains {num_keypoints_gt} keypoints. " | |
f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " | |
"They have to agree with each other. For meaning of OKS, please refer to " | |
"http://cocodataset.org/#keypoints-eval." | |
) | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
coco_eval.summarize() | |
return coco_eval | |
class COCOevalMaxDets(COCOeval): | |
""" | |
Modified version of COCOeval for evaluating AP with a custom | |
maxDets (by default for COCO, maxDets is 100) | |
""" | |
def summarize(self): | |
""" | |
Compute and display summary metrics for evaluation results given | |
a custom value for max_dets_per_image | |
""" | |
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): | |
p = self.params | |
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" | |
titleStr = "Average Precision" if ap == 1 else "Average Recall" | |
typeStr = "(AP)" if ap == 1 else "(AR)" | |
iouStr = ( | |
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) | |
if iouThr is None | |
else "{:0.2f}".format(iouThr) | |
) | |
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] | |
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] | |
if ap == 1: | |
# dimension of precision: [TxRxKxAxM] | |
s = self.eval["precision"] | |
# IoU | |
if iouThr is not None: | |
t = np.where(iouThr == p.iouThrs)[0] | |
s = s[t] | |
s = s[:, :, :, aind, mind] | |
else: | |
# dimension of recall: [TxKxAxM] | |
s = self.eval["recall"] | |
if iouThr is not None: | |
t = np.where(iouThr == p.iouThrs)[0] | |
s = s[t] | |
s = s[:, :, aind, mind] | |
if len(s[s > -1]) == 0: | |
mean_s = -1 | |
else: | |
mean_s = np.mean(s[s > -1]) | |
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) | |
return mean_s | |
def _summarizeDets(): | |
stats = np.zeros((12,)) | |
# Evaluate AP using the custom limit on maximum detections per image | |
stats[0] = _summarize(1, maxDets=self.params.maxDets[2]) | |
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) | |
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) | |
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) | |
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) | |
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) | |
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) | |
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) | |
return stats | |
def _summarizeKps(): | |
stats = np.zeros((10,)) | |
stats[0] = _summarize(1, maxDets=20) | |
stats[1] = _summarize(1, maxDets=20, iouThr=0.5) | |
stats[2] = _summarize(1, maxDets=20, iouThr=0.75) | |
stats[3] = _summarize(1, maxDets=20, areaRng="medium") | |
stats[4] = _summarize(1, maxDets=20, areaRng="large") | |
stats[5] = _summarize(0, maxDets=20) | |
stats[6] = _summarize(0, maxDets=20, iouThr=0.5) | |
stats[7] = _summarize(0, maxDets=20, iouThr=0.75) | |
stats[8] = _summarize(0, maxDets=20, areaRng="medium") | |
stats[9] = _summarize(0, maxDets=20, areaRng="large") | |
return stats | |
if not self.eval: | |
raise Exception("Please run accumulate() first") | |
iouType = self.params.iouType | |
if iouType == "segm" or iouType == "bbox": | |
summarize = _summarizeDets | |
elif iouType == "keypoints": | |
summarize = _summarizeKps | |
self.stats = summarize() | |
def __str__(self): | |
self.summarize() | |