Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import logging | |
import numpy as np | |
import time | |
from annotator.oneformer.pycocotools.cocoeval import COCOeval | |
from annotator.oneformer.detectron2 import _C | |
logger = logging.getLogger(__name__) | |
class COCOeval_opt(COCOeval): | |
""" | |
This is a slightly modified version of the original COCO API, where the functions evaluateImg() | |
and accumulate() are implemented in C++ to speedup evaluation | |
""" | |
def evaluate(self): | |
""" | |
Run per image evaluation on given images and store results in self.evalImgs_cpp, a | |
datastructure that isn't readable from Python but is used by a c++ implementation of | |
accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure | |
self.evalImgs because this datastructure is a computational bottleneck. | |
:return: None | |
""" | |
tic = time.time() | |
p = self.params | |
# add backward compatibility if useSegm is specified in params | |
if p.useSegm is not None: | |
p.iouType = "segm" if p.useSegm == 1 else "bbox" | |
logger.info("Evaluate annotation type *{}*".format(p.iouType)) | |
p.imgIds = list(np.unique(p.imgIds)) | |
if p.useCats: | |
p.catIds = list(np.unique(p.catIds)) | |
p.maxDets = sorted(p.maxDets) | |
self.params = p | |
self._prepare() # bottleneck | |
# loop through images, area range, max detection number | |
catIds = p.catIds if p.useCats else [-1] | |
if p.iouType == "segm" or p.iouType == "bbox": | |
computeIoU = self.computeIoU | |
elif p.iouType == "keypoints": | |
computeIoU = self.computeOks | |
self.ious = { | |
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds | |
} # bottleneck | |
maxDet = p.maxDets[-1] | |
# <<<< Beginning of code differences with original COCO API | |
def convert_instances_to_cpp(instances, is_det=False): | |
# Convert annotations for a list of instances in an image to a format that's fast | |
# to access in C++ | |
instances_cpp = [] | |
for instance in instances: | |
instance_cpp = _C.InstanceAnnotation( | |
int(instance["id"]), | |
instance["score"] if is_det else instance.get("score", 0.0), | |
instance["area"], | |
bool(instance.get("iscrowd", 0)), | |
bool(instance.get("ignore", 0)), | |
) | |
instances_cpp.append(instance_cpp) | |
return instances_cpp | |
# Convert GT annotations, detections, and IOUs to a format that's fast to access in C++ | |
ground_truth_instances = [ | |
[convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds] | |
for imgId in p.imgIds | |
] | |
detected_instances = [ | |
[convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds] | |
for imgId in p.imgIds | |
] | |
ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds] | |
if not p.useCats: | |
# For each image, flatten per-category lists into a single list | |
ground_truth_instances = [[[o for c in i for o in c]] for i in ground_truth_instances] | |
detected_instances = [[[o for c in i for o in c]] for i in detected_instances] | |
# Call C++ implementation of self.evaluateImgs() | |
self._evalImgs_cpp = _C.COCOevalEvaluateImages( | |
p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances | |
) | |
self._evalImgs = None | |
self._paramsEval = copy.deepcopy(self.params) | |
toc = time.time() | |
logger.info("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic)) | |
# >>>> End of code differences with original COCO API | |
def accumulate(self): | |
""" | |
Accumulate per image evaluation results and store the result in self.eval. Does not | |
support changing parameter settings from those used by self.evaluate() | |
""" | |
logger.info("Accumulating evaluation results...") | |
tic = time.time() | |
assert hasattr( | |
self, "_evalImgs_cpp" | |
), "evaluate() must be called before accmulate() is called." | |
self.eval = _C.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp) | |
# recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections | |
self.eval["recall"] = np.array(self.eval["recall"]).reshape( | |
self.eval["counts"][:1] + self.eval["counts"][2:] | |
) | |
# precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X | |
# num_area_ranges X num_max_detections | |
self.eval["precision"] = np.array(self.eval["precision"]).reshape(self.eval["counts"]) | |
self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"]) | |
toc = time.time() | |
logger.info("COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic)) | |