Spaces:
Running
on
A10G
Running
on
A10G
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import numpy as np | |
import os | |
import tempfile | |
import xml.etree.ElementTree as ET | |
from collections import OrderedDict, defaultdict | |
from functools import lru_cache | |
import torch | |
from annotator.oneformer.detectron2.data import MetadataCatalog | |
from annotator.oneformer.detectron2.utils import comm | |
from annotator.oneformer.detectron2.utils.file_io import PathManager | |
from .evaluator import DatasetEvaluator | |
class PascalVOCDetectionEvaluator(DatasetEvaluator): | |
""" | |
Evaluate Pascal VOC style AP for Pascal VOC dataset. | |
It contains a synchronization, therefore has to be called from all ranks. | |
Note that the concept of AP can be implemented in different ways and may not | |
produce identical results. This class mimics the implementation of the official | |
Pascal VOC Matlab API, and should produce similar but not identical results to the | |
official API. | |
""" | |
def __init__(self, dataset_name): | |
""" | |
Args: | |
dataset_name (str): name of the dataset, e.g., "voc_2007_test" | |
""" | |
self._dataset_name = dataset_name | |
meta = MetadataCatalog.get(dataset_name) | |
# Too many tiny files, download all to local for speed. | |
annotation_dir_local = PathManager.get_local_path( | |
os.path.join(meta.dirname, "Annotations/") | |
) | |
self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") | |
self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") | |
self._class_names = meta.thing_classes | |
assert meta.year in [2007, 2012], meta.year | |
self._is_2007 = meta.year == 2007 | |
self._cpu_device = torch.device("cpu") | |
self._logger = logging.getLogger(__name__) | |
def reset(self): | |
self._predictions = defaultdict(list) # class name -> list of prediction strings | |
def process(self, inputs, outputs): | |
for input, output in zip(inputs, outputs): | |
image_id = input["image_id"] | |
instances = output["instances"].to(self._cpu_device) | |
boxes = instances.pred_boxes.tensor.numpy() | |
scores = instances.scores.tolist() | |
classes = instances.pred_classes.tolist() | |
for box, score, cls in zip(boxes, scores, classes): | |
xmin, ymin, xmax, ymax = box | |
# The inverse of data loading logic in `datasets/pascal_voc.py` | |
xmin += 1 | |
ymin += 1 | |
self._predictions[cls].append( | |
f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" | |
) | |
def evaluate(self): | |
""" | |
Returns: | |
dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". | |
""" | |
all_predictions = comm.gather(self._predictions, dst=0) | |
if not comm.is_main_process(): | |
return | |
predictions = defaultdict(list) | |
for predictions_per_rank in all_predictions: | |
for clsid, lines in predictions_per_rank.items(): | |
predictions[clsid].extend(lines) | |
del all_predictions | |
self._logger.info( | |
"Evaluating {} using {} metric. " | |
"Note that results do not use the official Matlab API.".format( | |
self._dataset_name, 2007 if self._is_2007 else 2012 | |
) | |
) | |
with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: | |
res_file_template = os.path.join(dirname, "{}.txt") | |
aps = defaultdict(list) # iou -> ap per class | |
for cls_id, cls_name in enumerate(self._class_names): | |
lines = predictions.get(cls_id, [""]) | |
with open(res_file_template.format(cls_name), "w") as f: | |
f.write("\n".join(lines)) | |
for thresh in range(50, 100, 5): | |
rec, prec, ap = voc_eval( | |
res_file_template, | |
self._anno_file_template, | |
self._image_set_path, | |
cls_name, | |
ovthresh=thresh / 100.0, | |
use_07_metric=self._is_2007, | |
) | |
aps[thresh].append(ap * 100) | |
ret = OrderedDict() | |
mAP = {iou: np.mean(x) for iou, x in aps.items()} | |
ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} | |
return ret | |
############################################################################## | |
# | |
# Below code is modified from | |
# https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py | |
# -------------------------------------------------------- | |
# Fast/er R-CNN | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Bharath Hariharan | |
# -------------------------------------------------------- | |
"""Python implementation of the PASCAL VOC devkit's AP evaluation code.""" | |
def parse_rec(filename): | |
"""Parse a PASCAL VOC xml file.""" | |
with PathManager.open(filename) as f: | |
tree = ET.parse(f) | |
objects = [] | |
for obj in tree.findall("object"): | |
obj_struct = {} | |
obj_struct["name"] = obj.find("name").text | |
obj_struct["pose"] = obj.find("pose").text | |
obj_struct["truncated"] = int(obj.find("truncated").text) | |
obj_struct["difficult"] = int(obj.find("difficult").text) | |
bbox = obj.find("bndbox") | |
obj_struct["bbox"] = [ | |
int(bbox.find("xmin").text), | |
int(bbox.find("ymin").text), | |
int(bbox.find("xmax").text), | |
int(bbox.find("ymax").text), | |
] | |
objects.append(obj_struct) | |
return objects | |
def voc_ap(rec, prec, use_07_metric=False): | |
"""Compute VOC AP given precision and recall. If use_07_metric is true, uses | |
the VOC 07 11-point method (default:False). | |
""" | |
if use_07_metric: | |
# 11 point metric | |
ap = 0.0 | |
for t in np.arange(0.0, 1.1, 0.1): | |
if np.sum(rec >= t) == 0: | |
p = 0 | |
else: | |
p = np.max(prec[rec >= t]) | |
ap = ap + p / 11.0 | |
else: | |
# correct AP calculation | |
# first append sentinel values at the end | |
mrec = np.concatenate(([0.0], rec, [1.0])) | |
mpre = np.concatenate(([0.0], prec, [0.0])) | |
# compute the precision envelope | |
for i in range(mpre.size - 1, 0, -1): | |
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) | |
# to calculate area under PR curve, look for points | |
# where X axis (recall) changes value | |
i = np.where(mrec[1:] != mrec[:-1])[0] | |
# and sum (\Delta recall) * prec | |
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) | |
return ap | |
def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): | |
"""rec, prec, ap = voc_eval(detpath, | |
annopath, | |
imagesetfile, | |
classname, | |
[ovthresh], | |
[use_07_metric]) | |
Top level function that does the PASCAL VOC evaluation. | |
detpath: Path to detections | |
detpath.format(classname) should produce the detection results file. | |
annopath: Path to annotations | |
annopath.format(imagename) should be the xml annotations file. | |
imagesetfile: Text file containing the list of images, one image per line. | |
classname: Category name (duh) | |
[ovthresh]: Overlap threshold (default = 0.5) | |
[use_07_metric]: Whether to use VOC07's 11 point AP computation | |
(default False) | |
""" | |
# assumes detections are in detpath.format(classname) | |
# assumes annotations are in annopath.format(imagename) | |
# assumes imagesetfile is a text file with each line an image name | |
# first load gt | |
# read list of images | |
with PathManager.open(imagesetfile, "r") as f: | |
lines = f.readlines() | |
imagenames = [x.strip() for x in lines] | |
# load annots | |
recs = {} | |
for imagename in imagenames: | |
recs[imagename] = parse_rec(annopath.format(imagename)) | |
# extract gt objects for this class | |
class_recs = {} | |
npos = 0 | |
for imagename in imagenames: | |
R = [obj for obj in recs[imagename] if obj["name"] == classname] | |
bbox = np.array([x["bbox"] for x in R]) | |
difficult = np.array([x["difficult"] for x in R]).astype(bool) | |
# difficult = np.array([False for x in R]).astype(bool) # treat all "difficult" as GT | |
det = [False] * len(R) | |
npos = npos + sum(~difficult) | |
class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} | |
# read dets | |
detfile = detpath.format(classname) | |
with open(detfile, "r") as f: | |
lines = f.readlines() | |
splitlines = [x.strip().split(" ") for x in lines] | |
image_ids = [x[0] for x in splitlines] | |
confidence = np.array([float(x[1]) for x in splitlines]) | |
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) | |
# sort by confidence | |
sorted_ind = np.argsort(-confidence) | |
BB = BB[sorted_ind, :] | |
image_ids = [image_ids[x] for x in sorted_ind] | |
# go down dets and mark TPs and FPs | |
nd = len(image_ids) | |
tp = np.zeros(nd) | |
fp = np.zeros(nd) | |
for d in range(nd): | |
R = class_recs[image_ids[d]] | |
bb = BB[d, :].astype(float) | |
ovmax = -np.inf | |
BBGT = R["bbox"].astype(float) | |
if BBGT.size > 0: | |
# compute overlaps | |
# intersection | |
ixmin = np.maximum(BBGT[:, 0], bb[0]) | |
iymin = np.maximum(BBGT[:, 1], bb[1]) | |
ixmax = np.minimum(BBGT[:, 2], bb[2]) | |
iymax = np.minimum(BBGT[:, 3], bb[3]) | |
iw = np.maximum(ixmax - ixmin + 1.0, 0.0) | |
ih = np.maximum(iymax - iymin + 1.0, 0.0) | |
inters = iw * ih | |
# union | |
uni = ( | |
(bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) | |
+ (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) | |
- inters | |
) | |
overlaps = inters / uni | |
ovmax = np.max(overlaps) | |
jmax = np.argmax(overlaps) | |
if ovmax > ovthresh: | |
if not R["difficult"][jmax]: | |
if not R["det"][jmax]: | |
tp[d] = 1.0 | |
R["det"][jmax] = 1 | |
else: | |
fp[d] = 1.0 | |
else: | |
fp[d] = 1.0 | |
# compute precision recall | |
fp = np.cumsum(fp) | |
tp = np.cumsum(tp) | |
rec = tp / float(npos) | |
# avoid divide by zero in case the first detection matches a difficult | |
# ground truth | |
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) | |
ap = voc_ap(rec, prec, use_07_metric) | |
return rec, prec, ap | |