Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import json | |
import numpy as np | |
import os | |
import torch | |
from annotator.oneformer.pycocotools.cocoeval import COCOeval, maskUtils | |
from annotator.oneformer.detectron2.structures import BoxMode, RotatedBoxes, pairwise_iou_rotated | |
from annotator.oneformer.detectron2.utils.file_io import PathManager | |
from .coco_evaluation import COCOEvaluator | |
class RotatedCOCOeval(COCOeval): | |
def is_rotated(box_list): | |
if type(box_list) == np.ndarray: | |
return box_list.shape[1] == 5 | |
elif type(box_list) == list: | |
if box_list == []: # cannot decide the box_dim | |
return False | |
return np.all( | |
np.array( | |
[ | |
(len(obj) == 5) and ((type(obj) == list) or (type(obj) == np.ndarray)) | |
for obj in box_list | |
] | |
) | |
) | |
return False | |
def boxlist_to_tensor(boxlist, output_box_dim): | |
if type(boxlist) == np.ndarray: | |
box_tensor = torch.from_numpy(boxlist) | |
elif type(boxlist) == list: | |
if boxlist == []: | |
return torch.zeros((0, output_box_dim), dtype=torch.float32) | |
else: | |
box_tensor = torch.FloatTensor(boxlist) | |
else: | |
raise Exception("Unrecognized boxlist type") | |
input_box_dim = box_tensor.shape[1] | |
if input_box_dim != output_box_dim: | |
if input_box_dim == 4 and output_box_dim == 5: | |
box_tensor = BoxMode.convert(box_tensor, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS) | |
else: | |
raise Exception( | |
"Unable to convert from {}-dim box to {}-dim box".format( | |
input_box_dim, output_box_dim | |
) | |
) | |
return box_tensor | |
def compute_iou_dt_gt(self, dt, gt, is_crowd): | |
if self.is_rotated(dt) or self.is_rotated(gt): | |
# TODO: take is_crowd into consideration | |
assert all(c == 0 for c in is_crowd) | |
dt = RotatedBoxes(self.boxlist_to_tensor(dt, output_box_dim=5)) | |
gt = RotatedBoxes(self.boxlist_to_tensor(gt, output_box_dim=5)) | |
return pairwise_iou_rotated(dt, gt) | |
else: | |
# This is the same as the classical COCO evaluation | |
return maskUtils.iou(dt, gt, is_crowd) | |
def computeIoU(self, imgId, catId): | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return [] | |
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in inds] | |
if len(dt) > p.maxDets[-1]: | |
dt = dt[0 : p.maxDets[-1]] | |
assert p.iouType == "bbox", "unsupported iouType for iou computation" | |
g = [g["bbox"] for g in gt] | |
d = [d["bbox"] for d in dt] | |
# compute iou between each dt and gt region | |
iscrowd = [int(o["iscrowd"]) for o in gt] | |
# Note: this function is copied from cocoeval.py in cocoapi | |
# and the major difference is here. | |
ious = self.compute_iou_dt_gt(d, g, iscrowd) | |
return ious | |
class RotatedCOCOEvaluator(COCOEvaluator): | |
""" | |
Evaluate object proposal/instance detection outputs using COCO-like metrics and APIs, | |
with rotated boxes support. | |
Note: this uses IOU only and does not consider angle differences. | |
""" | |
def process(self, inputs, outputs): | |
""" | |
Args: | |
inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). | |
It is a list of dict. Each dict corresponds to an image and | |
contains keys like "height", "width", "file_name", "image_id". | |
outputs: the outputs of a COCO model. It is a list of dicts with key | |
"instances" that contains :class:`Instances`. | |
""" | |
for input, output in zip(inputs, outputs): | |
prediction = {"image_id": input["image_id"]} | |
if "instances" in output: | |
instances = output["instances"].to(self._cpu_device) | |
prediction["instances"] = self.instances_to_json(instances, input["image_id"]) | |
if "proposals" in output: | |
prediction["proposals"] = output["proposals"].to(self._cpu_device) | |
self._predictions.append(prediction) | |
def instances_to_json(self, instances, img_id): | |
num_instance = len(instances) | |
if num_instance == 0: | |
return [] | |
boxes = instances.pred_boxes.tensor.numpy() | |
if boxes.shape[1] == 4: | |
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
boxes = boxes.tolist() | |
scores = instances.scores.tolist() | |
classes = instances.pred_classes.tolist() | |
results = [] | |
for k in range(num_instance): | |
result = { | |
"image_id": img_id, | |
"category_id": classes[k], | |
"bbox": boxes[k], | |
"score": scores[k], | |
} | |
results.append(result) | |
return results | |
def _eval_predictions(self, predictions, img_ids=None): # img_ids: unused | |
""" | |
Evaluate predictions on the given tasks. | |
Fill self._results with the metrics of the tasks. | |
""" | |
self._logger.info("Preparing results for COCO format ...") | |
coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) | |
# unmap the category ids for COCO | |
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): | |
reverse_id_mapping = { | |
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items() | |
} | |
for result in coco_results: | |
result["category_id"] = reverse_id_mapping[result["category_id"]] | |
if self._output_dir: | |
file_path = os.path.join(self._output_dir, "coco_instances_results.json") | |
self._logger.info("Saving results to {}".format(file_path)) | |
with PathManager.open(file_path, "w") as f: | |
f.write(json.dumps(coco_results)) | |
f.flush() | |
if not self._do_evaluation: | |
self._logger.info("Annotations are not available for evaluation.") | |
return | |
self._logger.info("Evaluating predictions ...") | |
assert self._tasks is None or set(self._tasks) == { | |
"bbox" | |
}, "[RotatedCOCOEvaluator] Only bbox evaluation is supported" | |
coco_eval = ( | |
self._evaluate_predictions_on_coco(self._coco_api, coco_results) | |
if len(coco_results) > 0 | |
else None # cocoapi does not handle empty results very well | |
) | |
task = "bbox" | |
res = self._derive_coco_results( | |
coco_eval, task, class_names=self._metadata.get("thing_classes") | |
) | |
self._results[task] = res | |
def _evaluate_predictions_on_coco(self, coco_gt, coco_results): | |
""" | |
Evaluate the coco results using COCOEval API. | |
""" | |
assert len(coco_results) > 0 | |
coco_dt = coco_gt.loadRes(coco_results) | |
# Only bbox is supported for now | |
coco_eval = RotatedCOCOeval(coco_gt, coco_dt, iouType="bbox") | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
coco_eval.summarize() | |
return coco_eval | |