Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import math | |
from bisect import bisect_right | |
from typing import List | |
import torch | |
from fvcore.common.param_scheduler import ( | |
CompositeParamScheduler, | |
ConstantParamScheduler, | |
LinearParamScheduler, | |
ParamScheduler, | |
) | |
try: | |
from torch.optim.lr_scheduler import LRScheduler | |
except ImportError: | |
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler | |
logger = logging.getLogger(__name__) | |
class WarmupParamScheduler(CompositeParamScheduler): | |
""" | |
Add an initial warmup stage to another scheduler. | |
""" | |
def __init__( | |
self, | |
scheduler: ParamScheduler, | |
warmup_factor: float, | |
warmup_length: float, | |
warmup_method: str = "linear", | |
rescale_interval: bool = False, | |
): | |
""" | |
Args: | |
scheduler: warmup will be added at the beginning of this scheduler | |
warmup_factor: the factor w.r.t the initial value of ``scheduler``, e.g. 0.001 | |
warmup_length: the relative length (in [0, 1]) of warmup steps w.r.t the entire | |
training, e.g. 0.01 | |
warmup_method: one of "linear" or "constant" | |
rescale_interval: whether we will rescale the interval of the scheduler after | |
warmup | |
""" | |
end_value = scheduler(warmup_length) # the value to reach when warmup ends | |
start_value = warmup_factor * scheduler(0.0) | |
if warmup_method == "constant": | |
warmup = ConstantParamScheduler(start_value) | |
elif warmup_method == "linear": | |
warmup = LinearParamScheduler(start_value, end_value) | |
else: | |
raise ValueError("Unknown warmup method: {}".format(warmup_method)) | |
super().__init__( | |
[warmup, scheduler], | |
interval_scaling=["rescaled", "rescaled" if rescale_interval else "fixed"], | |
lengths=[warmup_length, 1 - warmup_length], | |
) | |
class LRMultiplier(LRScheduler): | |
""" | |
A LRScheduler which uses fvcore :class:`ParamScheduler` to multiply the | |
learning rate of each param in the optimizer. | |
Every step, the learning rate of each parameter becomes its initial value | |
multiplied by the output of the given :class:`ParamScheduler`. | |
The absolute learning rate value of each parameter can be different. | |
This scheduler can be used as long as the relative scale among them do | |
not change during training. | |
Examples: | |
:: | |
LRMultiplier( | |
opt, | |
WarmupParamScheduler( | |
MultiStepParamScheduler( | |
[1, 0.1, 0.01], | |
milestones=[60000, 80000], | |
num_updates=90000, | |
), 0.001, 100 / 90000 | |
), | |
max_iter=90000 | |
) | |
""" | |
# NOTES: in the most general case, every LR can use its own scheduler. | |
# Supporting this requires interaction with the optimizer when its parameter | |
# group is initialized. For example, classyvision implements its own optimizer | |
# that allows different schedulers for every parameter group. | |
# To avoid this complexity, we use this class to support the most common cases | |
# where the relative scale among all LRs stay unchanged during training. In this | |
# case we only need a total of one scheduler that defines the relative LR multiplier. | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
multiplier: ParamScheduler, | |
max_iter: int, | |
last_iter: int = -1, | |
): | |
""" | |
Args: | |
optimizer, last_iter: See ``torch.optim.lr_scheduler.LRScheduler``. | |
``last_iter`` is the same as ``last_epoch``. | |
multiplier: a fvcore ParamScheduler that defines the multiplier on | |
every LR of the optimizer | |
max_iter: the total number of training iterations | |
""" | |
if not isinstance(multiplier, ParamScheduler): | |
raise ValueError( | |
"_LRMultiplier(multiplier=) must be an instance of fvcore " | |
f"ParamScheduler. Got {multiplier} instead." | |
) | |
self._multiplier = multiplier | |
self._max_iter = max_iter | |
super().__init__(optimizer, last_epoch=last_iter) | |
def state_dict(self): | |
# fvcore schedulers are stateless. Only keep pytorch scheduler states | |
return {"base_lrs": self.base_lrs, "last_epoch": self.last_epoch} | |
def get_lr(self) -> List[float]: | |
multiplier = self._multiplier(self.last_epoch / self._max_iter) | |
return [base_lr * multiplier for base_lr in self.base_lrs] | |
""" | |
Content below is no longer needed! | |
""" | |
# NOTE: PyTorch's LR scheduler interface uses names that assume the LR changes | |
# only on epoch boundaries. We typically use iteration based schedules instead. | |
# As a result, "epoch" (e.g., as in self.last_epoch) should be understood to mean | |
# "iteration" instead. | |
# FIXME: ideally this would be achieved with a CombinedLRScheduler, separating | |
# MultiStepLR with WarmupLR but the current LRScheduler design doesn't allow it. | |
class WarmupMultiStepLR(LRScheduler): | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
milestones: List[int], | |
gamma: float = 0.1, | |
warmup_factor: float = 0.001, | |
warmup_iters: int = 1000, | |
warmup_method: str = "linear", | |
last_epoch: int = -1, | |
): | |
logger.warning( | |
"WarmupMultiStepLR is deprecated! Use LRMultipilier with fvcore ParamScheduler instead!" | |
) | |
if not list(milestones) == sorted(milestones): | |
raise ValueError( | |
"Milestones should be a list of" " increasing integers. Got {}", milestones | |
) | |
self.milestones = milestones | |
self.gamma = gamma | |
self.warmup_factor = warmup_factor | |
self.warmup_iters = warmup_iters | |
self.warmup_method = warmup_method | |
super().__init__(optimizer, last_epoch) | |
def get_lr(self) -> List[float]: | |
warmup_factor = _get_warmup_factor_at_iter( | |
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor | |
) | |
return [ | |
base_lr * warmup_factor * self.gamma ** bisect_right(self.milestones, self.last_epoch) | |
for base_lr in self.base_lrs | |
] | |
def _compute_values(self) -> List[float]: | |
# The new interface | |
return self.get_lr() | |
class WarmupCosineLR(LRScheduler): | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
max_iters: int, | |
warmup_factor: float = 0.001, | |
warmup_iters: int = 1000, | |
warmup_method: str = "linear", | |
last_epoch: int = -1, | |
): | |
logger.warning( | |
"WarmupCosineLR is deprecated! Use LRMultipilier with fvcore ParamScheduler instead!" | |
) | |
self.max_iters = max_iters | |
self.warmup_factor = warmup_factor | |
self.warmup_iters = warmup_iters | |
self.warmup_method = warmup_method | |
super().__init__(optimizer, last_epoch) | |
def get_lr(self) -> List[float]: | |
warmup_factor = _get_warmup_factor_at_iter( | |
self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor | |
) | |
# Different definitions of half-cosine with warmup are possible. For | |
# simplicity we multiply the standard half-cosine schedule by the warmup | |
# factor. An alternative is to start the period of the cosine at warmup_iters | |
# instead of at 0. In the case that warmup_iters << max_iters the two are | |
# very close to each other. | |
return [ | |
base_lr | |
* warmup_factor | |
* 0.5 | |
* (1.0 + math.cos(math.pi * self.last_epoch / self.max_iters)) | |
for base_lr in self.base_lrs | |
] | |
def _compute_values(self) -> List[float]: | |
# The new interface | |
return self.get_lr() | |
def _get_warmup_factor_at_iter( | |
method: str, iter: int, warmup_iters: int, warmup_factor: float | |
) -> float: | |
""" | |
Return the learning rate warmup factor at a specific iteration. | |
See :paper:`ImageNet in 1h` for more details. | |
Args: | |
method (str): warmup method; either "constant" or "linear". | |
iter (int): iteration at which to calculate the warmup factor. | |
warmup_iters (int): the number of warmup iterations. | |
warmup_factor (float): the base warmup factor (the meaning changes according | |
to the method used). | |
Returns: | |
float: the effective warmup factor at the given iteration. | |
""" | |
if iter >= warmup_iters: | |
return 1.0 | |
if method == "constant": | |
return warmup_factor | |
elif method == "linear": | |
alpha = iter / warmup_iters | |
return warmup_factor * (1 - alpha) + alpha | |
else: | |
raise ValueError("Unknown warmup method: {}".format(method)) | |