Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) Facebook, Inc. and its affiliates. | |
# -*- coding: utf-8 -*- | |
import typing | |
from typing import Any, List | |
import fvcore | |
from fvcore.nn import activation_count, flop_count, parameter_count, parameter_count_table | |
from torch import nn | |
from annotator.oneformer.detectron2.export import TracingAdapter | |
__all__ = [ | |
"activation_count_operators", | |
"flop_count_operators", | |
"parameter_count_table", | |
"parameter_count", | |
"FlopCountAnalysis", | |
] | |
FLOPS_MODE = "flops" | |
ACTIVATIONS_MODE = "activations" | |
# Some extra ops to ignore from counting, including elementwise and reduction ops | |
_IGNORED_OPS = { | |
"aten::add", | |
"aten::add_", | |
"aten::argmax", | |
"aten::argsort", | |
"aten::batch_norm", | |
"aten::constant_pad_nd", | |
"aten::div", | |
"aten::div_", | |
"aten::exp", | |
"aten::log2", | |
"aten::max_pool2d", | |
"aten::meshgrid", | |
"aten::mul", | |
"aten::mul_", | |
"aten::neg", | |
"aten::nonzero_numpy", | |
"aten::reciprocal", | |
"aten::repeat_interleave", | |
"aten::rsub", | |
"aten::sigmoid", | |
"aten::sigmoid_", | |
"aten::softmax", | |
"aten::sort", | |
"aten::sqrt", | |
"aten::sub", | |
"torchvision::nms", # TODO estimate flop for nms | |
} | |
class FlopCountAnalysis(fvcore.nn.FlopCountAnalysis): | |
""" | |
Same as :class:`fvcore.nn.FlopCountAnalysis`, but supports detectron2 models. | |
""" | |
def __init__(self, model, inputs): | |
""" | |
Args: | |
model (nn.Module): | |
inputs (Any): inputs of the given model. Does not have to be tuple of tensors. | |
""" | |
wrapper = TracingAdapter(model, inputs, allow_non_tensor=True) | |
super().__init__(wrapper, wrapper.flattened_inputs) | |
self.set_op_handle(**{k: None for k in _IGNORED_OPS}) | |
def flop_count_operators(model: nn.Module, inputs: list) -> typing.DefaultDict[str, float]: | |
""" | |
Implement operator-level flops counting using jit. | |
This is a wrapper of :func:`fvcore.nn.flop_count` and adds supports for standard | |
detection models in detectron2. | |
Please use :class:`FlopCountAnalysis` for more advanced functionalities. | |
Note: | |
The function runs the input through the model to compute flops. | |
The flops of a detection model is often input-dependent, for example, | |
the flops of box & mask head depends on the number of proposals & | |
the number of detected objects. | |
Therefore, the flops counting using a single input may not accurately | |
reflect the computation cost of a model. It's recommended to average | |
across a number of inputs. | |
Args: | |
model: a detectron2 model that takes `list[dict]` as input. | |
inputs (list[dict]): inputs to model, in detectron2's standard format. | |
Only "image" key will be used. | |
supported_ops (dict[str, Handle]): see documentation of :func:`fvcore.nn.flop_count` | |
Returns: | |
Counter: Gflop count per operator | |
""" | |
old_train = model.training | |
model.eval() | |
ret = FlopCountAnalysis(model, inputs).by_operator() | |
model.train(old_train) | |
return {k: v / 1e9 for k, v in ret.items()} | |
def activation_count_operators( | |
model: nn.Module, inputs: list, **kwargs | |
) -> typing.DefaultDict[str, float]: | |
""" | |
Implement operator-level activations counting using jit. | |
This is a wrapper of fvcore.nn.activation_count, that supports standard detection models | |
in detectron2. | |
Note: | |
The function runs the input through the model to compute activations. | |
The activations of a detection model is often input-dependent, for example, | |
the activations of box & mask head depends on the number of proposals & | |
the number of detected objects. | |
Args: | |
model: a detectron2 model that takes `list[dict]` as input. | |
inputs (list[dict]): inputs to model, in detectron2's standard format. | |
Only "image" key will be used. | |
Returns: | |
Counter: activation count per operator | |
""" | |
return _wrapper_count_operators(model=model, inputs=inputs, mode=ACTIVATIONS_MODE, **kwargs) | |
def _wrapper_count_operators( | |
model: nn.Module, inputs: list, mode: str, **kwargs | |
) -> typing.DefaultDict[str, float]: | |
# ignore some ops | |
supported_ops = {k: lambda *args, **kwargs: {} for k in _IGNORED_OPS} | |
supported_ops.update(kwargs.pop("supported_ops", {})) | |
kwargs["supported_ops"] = supported_ops | |
assert len(inputs) == 1, "Please use batch size=1" | |
tensor_input = inputs[0]["image"] | |
inputs = [{"image": tensor_input}] # remove other keys, in case there are any | |
old_train = model.training | |
if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)): | |
model = model.module | |
wrapper = TracingAdapter(model, inputs) | |
wrapper.eval() | |
if mode == FLOPS_MODE: | |
ret = flop_count(wrapper, (tensor_input,), **kwargs) | |
elif mode == ACTIVATIONS_MODE: | |
ret = activation_count(wrapper, (tensor_input,), **kwargs) | |
else: | |
raise NotImplementedError("Count for mode {} is not supported yet.".format(mode)) | |
# compatible with change in fvcore | |
if isinstance(ret, tuple): | |
ret = ret[0] | |
model.train(old_train) | |
return ret | |
def find_unused_parameters(model: nn.Module, inputs: Any) -> List[str]: | |
""" | |
Given a model, find parameters that do not contribute | |
to the loss. | |
Args: | |
model: a model in training mode that returns losses | |
inputs: argument or a tuple of arguments. Inputs of the model | |
Returns: | |
list[str]: the name of unused parameters | |
""" | |
assert model.training | |
for _, prm in model.named_parameters(): | |
prm.grad = None | |
if isinstance(inputs, tuple): | |
losses = model(*inputs) | |
else: | |
losses = model(inputs) | |
if isinstance(losses, dict): | |
losses = sum(losses.values()) | |
losses.backward() | |
unused: List[str] = [] | |
for name, prm in model.named_parameters(): | |
if prm.grad is None: | |
unused.append(name) | |
prm.grad = None | |
return unused | |