Spaces:
Running
on
A10G
Running
on
A10G
# Openpose | |
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose | |
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose | |
# 3rd Edited by ControlNet | |
# 4th Edited by ControlNet (added face and correct hands) | |
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs) | |
# This preprocessor is licensed by CMU for non-commercial use only. | |
import os | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
import json | |
import torch | |
import numpy as np | |
from . import util | |
from .body import Body, BodyResult, Keypoint | |
from .hand import Hand | |
from .face import Face | |
from .types import PoseResult, HandResult, FaceResult | |
from annotator.annotator_path import models_path | |
from typing import Tuple, List, Callable, Union, Optional | |
body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" | |
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" | |
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" | |
remote_onnx_det = "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx" | |
remote_onnx_pose = "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx" | |
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True): | |
""" | |
Draw the detected poses on an empty canvas. | |
Args: | |
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses. | |
H (int): The height of the canvas. | |
W (int): The width of the canvas. | |
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True. | |
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True. | |
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True. | |
Returns: | |
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses. | |
""" | |
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) | |
for pose in poses: | |
if draw_body: | |
canvas = util.draw_bodypose(canvas, pose.body.keypoints) | |
if draw_hand: | |
canvas = util.draw_handpose(canvas, pose.left_hand) | |
canvas = util.draw_handpose(canvas, pose.right_hand) | |
if draw_face: | |
canvas = util.draw_facepose(canvas, pose.face) | |
return canvas | |
def decode_json_as_poses(json_string: str, normalize_coords: bool = False) -> Tuple[List[PoseResult], int, int]: | |
""" Decode the json_string complying with the openpose JSON output format | |
to poses that controlnet recognizes. | |
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md | |
Args: | |
json_string: The json string to decode. | |
normalize_coords: Whether to normalize coordinates of each keypoint by canvas height/width. | |
`draw_pose` only accepts normalized keypoints. Set this param to True if | |
the input coords are not normalized. | |
Returns: | |
poses | |
canvas_height | |
canvas_width | |
""" | |
pose_json = json.loads(json_string) | |
height = pose_json['canvas_height'] | |
width = pose_json['canvas_width'] | |
def chunks(lst, n): | |
"""Yield successive n-sized chunks from lst.""" | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def decompress_keypoints(numbers: Optional[List[float]]) -> Optional[List[Optional[Keypoint]]]: | |
if not numbers: | |
return None | |
assert len(numbers) % 3 == 0 | |
def create_keypoint(x, y, c): | |
if c < 1.0: | |
return None | |
keypoint = Keypoint(x, y) | |
return keypoint | |
return [ | |
create_keypoint(x, y, c) | |
for x, y, c in chunks(numbers, n=3) | |
] | |
return ( | |
[ | |
PoseResult( | |
body=BodyResult(keypoints=decompress_keypoints(pose.get('pose_keypoints_2d'))), | |
left_hand=decompress_keypoints(pose.get('hand_left_keypoints_2d')), | |
right_hand=decompress_keypoints(pose.get('hand_right_keypoints_2d')), | |
face=decompress_keypoints(pose.get('face_keypoints_2d')) | |
) | |
for pose in pose_json['people'] | |
], | |
height, | |
width, | |
) | |
def encode_poses_as_json(poses: List[PoseResult], canvas_height: int, canvas_width: int) -> dict: | |
""" Encode the pose as a JSON compatible dict following openpose JSON output format: | |
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md | |
""" | |
def compress_keypoints(keypoints: Union[List[Keypoint], None]) -> Union[List[float], None]: | |
if not keypoints: | |
return None | |
return [ | |
value | |
for keypoint in keypoints | |
for value in ( | |
[float(keypoint.x), float(keypoint.y), 1.0] | |
if keypoint is not None | |
else [0.0, 0.0, 0.0] | |
) | |
] | |
return { | |
'people': [ | |
{ | |
'pose_keypoints_2d': compress_keypoints(pose.body.keypoints), | |
"face_keypoints_2d": compress_keypoints(pose.face), | |
"hand_left_keypoints_2d": compress_keypoints(pose.left_hand), | |
"hand_right_keypoints_2d":compress_keypoints(pose.right_hand), | |
} | |
for pose in poses | |
], | |
'canvas_height': canvas_height, | |
'canvas_width': canvas_width, | |
} | |
class OpenposeDetector: | |
""" | |
A class for detecting human poses in images using the Openpose model. | |
Attributes: | |
model_dir (str): Path to the directory where the pose models are stored. | |
""" | |
model_dir = os.path.join(models_path, "openpose") | |
def __init__(self): | |
self.device = 'cuda' | |
self.body_estimation = None | |
self.hand_estimation = None | |
self.face_estimation = None | |
self.dw_pose_estimation = None | |
def load_model(self): | |
""" | |
Load the Openpose body, hand, and face models. | |
""" | |
body_modelpath = os.path.join(self.model_dir, "body_pose_model.pth") | |
hand_modelpath = os.path.join(self.model_dir, "hand_pose_model.pth") | |
face_modelpath = os.path.join(self.model_dir, "facenet.pth") | |
if not os.path.exists(body_modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(body_model_path, model_dir=self.model_dir) | |
if not os.path.exists(hand_modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(hand_model_path, model_dir=self.model_dir) | |
if not os.path.exists(face_modelpath): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(face_model_path, model_dir=self.model_dir) | |
self.body_estimation = Body(body_modelpath) | |
self.hand_estimation = Hand(hand_modelpath) | |
self.face_estimation = Face(face_modelpath) | |
def load_dw_model(self): | |
from .wholebody import Wholebody # DW Pose | |
def load_model(filename: str, remote_url: str): | |
local_path = os.path.join(self.model_dir, filename) | |
if not os.path.exists(local_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(remote_url, model_dir=self.model_dir) | |
return local_path | |
onnx_det = load_model("yolox_l.onnx", remote_onnx_det) | |
onnx_pose = load_model("dw-ll_ucoco_384.onnx", remote_onnx_pose) | |
self.dw_pose_estimation = Wholebody(onnx_det, onnx_pose) | |
def unload_model(self): | |
""" | |
Unload the Openpose models by moving them to the CPU. | |
Note: DW Pose models always run on CPU, so no need to `unload` them. | |
""" | |
if self.body_estimation is not None: | |
self.body_estimation.model.to("cpu") | |
self.hand_estimation.model.to("cpu") | |
self.face_estimation.model.to("cpu") | |
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]: | |
left_hand = None | |
right_hand = None | |
H, W, _ = oriImg.shape | |
for x, y, w, is_left in util.handDetect(body, oriImg): | |
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
hand_result = [ | |
Keypoint(x=peak[0], y=peak[1]) | |
for peak in peaks | |
] | |
if is_left: | |
left_hand = hand_result | |
else: | |
right_hand = hand_result | |
return left_hand, right_hand | |
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]: | |
face = util.faceDetect(body, oriImg) | |
if face is None: | |
return None | |
x, y, w = face | |
H, W, _ = oriImg.shape | |
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) | |
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) | |
if peaks.ndim == 2 and peaks.shape[1] == 2: | |
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) | |
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) | |
return [ | |
Keypoint(x=peak[0], y=peak[1]) | |
for peak in peaks | |
] | |
return None | |
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]: | |
""" | |
Detect poses in the given image. | |
Args: | |
oriImg (numpy.ndarray): The input image for pose detection. | |
include_hand (bool, optional): Whether to include hand detection. Defaults to False. | |
include_face (bool, optional): Whether to include face detection. Defaults to False. | |
Returns: | |
List[PoseResult]: A list of PoseResult objects containing the detected poses. | |
""" | |
if self.body_estimation is None: | |
self.load_model() | |
self.body_estimation.model.to(self.device) | |
self.hand_estimation.model.to(self.device) | |
self.face_estimation.model.to(self.device) | |
self.body_estimation.cn_device = self.device | |
self.hand_estimation.cn_device = self.device | |
self.face_estimation.cn_device = self.device | |
oriImg = oriImg[:, :, ::-1].copy() | |
H, W, C = oriImg.shape | |
with torch.no_grad(): | |
candidate, subset = self.body_estimation(oriImg) | |
bodies = self.body_estimation.format_body_result(candidate, subset) | |
results = [] | |
for body in bodies: | |
left_hand, right_hand, face = (None,) * 3 | |
if include_hand: | |
left_hand, right_hand = self.detect_hands(body, oriImg) | |
if include_face: | |
face = self.detect_face(body, oriImg) | |
results.append(PoseResult(BodyResult( | |
keypoints=[ | |
Keypoint( | |
x=keypoint.x / float(W), | |
y=keypoint.y / float(H) | |
) if keypoint is not None else None | |
for keypoint in body.keypoints | |
], | |
total_score=body.total_score, | |
total_parts=body.total_parts | |
), left_hand, right_hand, face)) | |
return results | |
def detect_poses_dw(self, oriImg) -> List[PoseResult]: | |
""" | |
Detect poses in the given image using DW Pose: | |
https://github.com/IDEA-Research/DWPose | |
Args: | |
oriImg (numpy.ndarray): The input image for pose detection. | |
Returns: | |
List[PoseResult]: A list of PoseResult objects containing the detected poses. | |
""" | |
from .wholebody import Wholebody # DW Pose | |
self.load_dw_model() | |
with torch.no_grad(): | |
keypoints_info = self.dw_pose_estimation(oriImg.copy()) | |
return Wholebody.format_result(keypoints_info) | |
def __call__( | |
self, oriImg, include_body=True, include_hand=False, include_face=False, | |
use_dw_pose=False, json_pose_callback: Callable[[str], None] = None, | |
): | |
""" | |
Detect and draw poses in the given image. | |
Args: | |
oriImg (numpy.ndarray): The input image for pose detection and drawing. | |
include_body (bool, optional): Whether to include body keypoints. Defaults to True. | |
include_hand (bool, optional): Whether to include hand keypoints. Defaults to False. | |
include_face (bool, optional): Whether to include face keypoints. Defaults to False. | |
use_dw_pose (bool, optional): Whether to use DW pose detection algorithm. Defaults to False. | |
json_pose_callback (Callable, optional): A callback that accepts the pose JSON string. | |
Returns: | |
numpy.ndarray: The image with detected and drawn poses. | |
""" | |
H, W, _ = oriImg.shape | |
if use_dw_pose: | |
poses = self.detect_poses_dw(oriImg) | |
else: | |
poses = self.detect_poses(oriImg, include_hand, include_face) | |
if json_pose_callback: | |
json_pose_callback(encode_poses_as_json(poses, H, W)) | |
return draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face) | |